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CHAPTER 1. INTRODUCTION 

Statement of Purpose 

In the recent advancement of piezoelectric technology, there has been a large growth in 

the application of these devices for chemical sensing. These sensors operate by detecting 

changes in their environment which perturb the electrical - acoustic operation and in turn 

can be harnessed by means of supporting electronics and signal processing to monitor 

various processes. Examples include remote environmental monitoring, chemical process 

control, and commercial gas phase detectors. The ability to accurately and concisely 

determine the presence of a chemical analyte is a function of many variables including the 

type of piezoelectric device, the interaction and selectivity of the analyte with a chemical 

sensing layer, the environment to which this sensor is exposed, and the ability of the 

supporting electronics to accurately reflect this information. 

The mass sensing properties of the bulk acoustic-wave thin-film resonator (TFR) have 

been demonstrated and shows great promise due to its high sensitivity and potential for 

microelectronic integration [1-4]. The incorporation of the TFR in an integrated design 

necessitates accurate physical models based upon the piezoelectric - acoustic coupling and 

inherent parasitics of the high frequency TFR [5,6]. In this study, the chemical sensing 

theory is extended to include viscoelastic effects of the sensing film on one of the resonator 

electrodes. This theory is presented in a general manner which applies as well to the 

chemical sensing behavior of the quartz crystal microbalance (QCM) [7-14]. The design 

and implementation of a TFR controlled chemical sensing system is also demonstrated. 

This system employs the frequency selectivity of the TFR as the feedback element in 

integrated Colpitts oscillators which are downconverted by superheterodyne techniques. 

TTie basic structure of the TFR is illustrated in Figure 1.1 with the upper portion being a top 
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Topside 
Au Electrode 

Silicon 

Bottom Au Electrode 

Figure 1.1. Bulk-acoustic wave thin-film resonator topology. 

view and the lower portion being a side view of the layer structure. The standard TFR has 

metal electrodes, either being gold or aluminum, in 400 Hm squares or circles and supports 

a fundamental resonating frequency of approximately 1 GHz for a piezoelectric Aluminum 

Nitride (AIN) thickness of 5 |im. The TFR operates by application of a potential voltage 

between the metal electrodes resulting in a spatial dependent time harmonic electric field in 

its bulk. Due to the electrical-mechanical interaction of the piezoelectric membrane, a 

resonating acoustic wave is set up which travels in the thickness direction (referred to as a 

bulk acousdc wave). 

Due to their acoustic, electrical and material properties, piezoelectric resonators respond 

to changes in their operating environment such as power level, temperature, pressure, and 
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the physical properties between the electrode interface and the surrounding medium. One 

particular area of this research concentrates on characterizing the resonance behavior of 

thickness mode resonators based upon the physical properties at the electrode interface 

which include interfacial mass density, elasticity, viscosity, and thickness of the composite 

device consisting of the piezoelectric material, the electrodes, and any deposited layer on 

the electrode surface in contact with the surrounding medium. The results and models from 

this research will be beneficial to surface chemistry studies and also have applications to 

fabrication techniques and electrical modeling. The use of this theory is employed in this 

dissertation in a study of a QCM coated with a commercially developed negative resist. 

Photo-polymerization of the resist results in induced visco-elastic structural changes which 

can be monitored and characterized using the full admittance theory of the composite 

thickness mode resonator. 

In order to validate the chemical sensing concept, Colpitts oscillators which use the TFR 

as the frequency selective feedback element are designed as illustrated in Figure 1.2. The 

Colpitts topology was chosen to be compatible with the TFR geometry and also reduces the 

bondwire parasitics. The design and analysis of the oscillator leads naturally from the 

VCC 

TFR 3ic 

VEE 

Figure 1.2. TFH based Colpitts oscillator electrical schematic. 
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equivalent circuit model of the viscoelastically loaded TFR since it is then possible to 

determine how the viscoelastic behavior of the TFR affects the oscillating signal under 

small and large signal conditions. This analysis is extended further in a differential system 

which consists of two TFR based oscillators connected to a mixer which mixes the 

oscillating signals down to a low frequency baseband difference signal. The two 

oscillators are identical except one is treated with a chemically selective coating which is 

allowed to absorb the gas phase analyte while the other device is passivated so as to not 

respond to the changes in the environment. The differential system design was chosen for 

two important reasons; the first reason is the simplification of the electrical measurement 

procedure. The mixing of the two oscillator signals results in a baseband signal which can 

be measured by standard low frequency electronics. The second reason is the temperature 

drift of the TFR oscillator can be compensated by the mixing of the two oscillators. Since 

the two oscillators are based upon the same circuit structure with similar TFR's, the two 

oscillators should track each others temperature drift resulting in a zero net frequency 

fluctuation due to temperature variation. 

Literature Review 

Due to the recent advancement of sensor technology based upon piezoelectric devices, 

there is a substantial amount of piezoelectric models available from the literature. These 

models vary for the type of device being analyzed since depending on how the electric field 

is applied in relation to the structure geometry and its crystal orientation, various 

propagation modes for the elastic wave can be simultaneously generated. Examples of 

these devices include quartz crystal microbalances (QCM), surface acoustic wave devices 

(SAW), shear-horizontal acoustic plate mode (APM) waveguides, and flexural plate wave 

(Lamb) devices. The common thread among all these devices (except the Lamb wave 

device) is the utilization of a shear wave mode to characterize the sensor behavior. The 
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Lamb wave stated simply is a low frequency transverse wave traveling between two 

electrodes on a thin membrane similar to the TFR. An operational comparison of all these 

devices is out of the scope of this study, however the point to be made is that the TFR 

operates with the fundamental propagating mode being a compressional wave. Thus the 

behavior of this device as a sensor is expected to be different from all other devices. 

A thickness mode device, such as the QCM or the TFR, can be considered to be one-

dimensional if the lateral dimension is large in comparison to the thickness direction. This 

is the case for the TFR. For these devices, the propagating modes can be restricted to three 

types of displacement fields: one compressional and two shear. Multiport network models 

based on transmission line analogies have been developed to model each mode 

[15,16,17,18]. These models are extensions of the classic Mason model [19,20]. This 

model uses transmission lines with the acoustic wave being analogous to voltage waves in 

an electrical transmission line. The piezoelectric coupling is harnessed by the turns ratio of 

an ideal transformer. This model also uses capacitors, some of which are negative. 

Viscoelastic effects can be included by using a complex number for the overlayer shear 

modulus. Even though the analogies for this model exist, the physical significance and 

relationships between Uie electrical behavior and the overlayer parameters are difficult to 

extract. A new transmission line analog, which does not contain the transformer and 

negative capacitors, has been developed [21], however the difficulty in extracting a 

relationship between electrical-viscoelastic behavior is still not clear. 

A general one-dimensional transfer matrix description of modeling acoustic wave 

propagation in layered stiuctiu^s is given by Adler, et al. [22-24] and Nowotny and Benes 

[25]. This analysis is derived as an exact solution of the fundamental differential equations 

and boundary conditions for layered structures utilizing materials of arbitrary anisotropy, 

piezoelectricity, and conductivity. The ability to model viscoelastic layers is possible by 

this approach by utilizing complex elastic constants. The formulation for this approach 
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consists of solving a vector-matrix differential equation, one for each layer, with the 

vector consisting of the eight quantities which are continuous across the layer interfaces: 

three stress components, three particle velocity components, the electric displacement, and 

the electric potential. The solution to the vector matrix differential equation consists of state 

transition matrices that map the variables from one layer to the other. Thus, multiple layers 

can be handled by multiplying the individual state transition matrices in the appropriate 

order which forces the boundary conditions to be imposed on only the two remaining 

surfaces. The admittance can be then be solved for by standard matrix inversion 

techniques. Even though this method is the most general one-dimensional technique to date 

based upon the linearized piezoelectric differential equations, there are two complications to 

this analysis which degrades the approach. The first being that the state transition matrix 

solution to the vector-maoix differential equation is calculated by taking the exponent of a 

8*8 matrix. The exponential of a matrix calculation requires specialized software for which 

to the best of the authors knowledge, the only software package which performs this 

calculation is PC-MATLAB [26]. The second failing of this approach is that the ability to 

delineate physical expressions for the electrical behavior of the multilayer device is not 

possible. The physics of the acoustic-electiical interaction is lost in the mathematical 

technique. 

The state transition matrix multiple layer analysis is considered to be the most general 

since it can handle wave propagation in SAW devices as well as shear and compressional 

particle displacement modes in bulk -wave composite geometries. This generality can be 

simplified for bulk-wave devices by only considering the two shear wave modes and the 

one compressional particle displacement mode for a one dimensional resonator. Most of 

the reported literature on this approach has analyzed the behavior of thickness shear mode 

acoustic wave sensors with viscoelastic layers. Kanazawa and co-workers [27-29] analyze 

a viscoelastically loaded AT-cut quartz resonator. In this model, it is assumed that the cut 
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of the crystal is such that only unidirectional shear particle displacements result due to the 

application of a potential. This analysis includes a viscous term in the stress-strain relation 

to account for quartz acoustic losses. The stress-strain relation in the isotropic viscoelastic 

overlayer is handled in a similar manner with a complex elastic shear modulus. The real 

part represents the shear elastic storage modulus while the imaginary component represents 

the shear loss modulus which is the radian frequency times the viscosity. This work does a 

nice job in presenting the underlying theory of operation. Applications of this work are 

presented in subsequent studies which investigated the admittance behavior of quartz 

resonators with polymer films [30-32]. The most notable contribution of these papers is 

the occurrence of film resonance by thickness extension of the polymer film. Not 

addressed in these studies are how the visco-elastic behavior of the polymer film affects the 

film resonance and how the acoustical impedance determines the film resonance properties. 

A further analysis of the simultaneous viscoelastic overlayer and liquid loading of a 

quartz crystal microbalance is done by Martin and co-workers [33]. This analysis is based 

on the one-dimensional piezoelectric theory with the inclusion of viscous losses and an 

effective decay length for the propagation of thickness shear waves loaded by a viscoelastic 

overlayer and a contacting Newtonian liquid. The utility of this analysis lies in the 

calculation of the electrical admittance expression from which a lumped-element equivalent 

circuit model can be derived. The resulting model is a modified Butterworth - Van Dyke 

equivalent circuit [20], having circuit elements that are explicitly related to the physical 

properties of the quartz, perturbing mass layer, and contacting liquid. The equivalent 

circuit derivation opens up the possibility of modeling the behavior of the viscoelastically 

loaded resonator in an oscillator circuit design using a circuit simulator such as SPICE^T^ 

or Touchstone'^M. A limitation to this analysis is the assumption that the shear stress 

varies linearly across the viscoelastic thin film. Thus, the admittance and frequency 

response of the resonator is not affected by the visco-elastic properties of the film since the 



www.manaraa.com

8 

thickness is considered negligibly small. This assumption is not always valid for gas phase 

chemical sensing films since the dynamic range is increased by increasing the thickness of 

the polymer film. Especially in the case of the TFR gas phase chemical sensor, virtually 

any viscoelastic overlayer, with the exception being a monolayer, is going to be of the same 

order of thickness as the piezoelectric AIN membrane resulting in both displacement and 

stress variation across the bulk of the overlayer. Thus, there exists a need to extend this 

electrical modeling theory to cover the full thickness and visco-elastic range that can be 

encountered in any potential gas phase sensing application. 

In order to characterize accurately the detection limits of the TFR sensor, the electrical 

noise of the sensor and supporting system electronics must be analyzed. Typically, in a 

sensor system, the desired output is a dynamic signal from which information can be 

extracted via the relative frequency shift over the measurement time and changes in the 

signal amplitude or power level. The relevant literature on phase noise characterization of 

ultrasonic sensors is surprisingly limited. The only technical paper found which formulates 

an overall sensor detection limit based upon sensitivity of the sensor to the measurand (i.e. 

mass sensitivity, viscosity sensitivity, etc) and to the phase noise characteristics of the 

acoustic device is the report by Baer, White, et. al. [34]. The phase noise characteristics of 

a 6 MHz flexural wave sensor is measured in this paper where it is reported that the spectral 

density of phase fluctuations varied as I/f below 100 Hz with 1 Hz intercepts between -90 

and -107 dBc/Hz, The phase noise is then normalized to the net phase length of the 

acoustic plate in order to make comparisons with other sensor technologies. The detection 

limit is then calculated by taking the square root of the integral of the normalized noise 

power and dividing it by the mass sensitivity. The limits of the integral depend on the 

measurement system bandwidth and the period of the measurement observation. From this 

calculation, the detection limits of flexural wave devices are at least an order of magnitude 

higher than the higher operating frequency SAW device. It is not clear how one port 
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resonator sensors such as the TFR would compare in this analysis since phase delay is not 

a relevant normalization format. Nevertheless, this analysis represents a possible approach 

to unifying the sensor measurand sensitivity with the phase noise for an overall detection 

limit. 

The reported phase noise studies done on acoustic wave devices are dominated by SAW 

filters and resonators [35,36,37] and quartz crystal resonators [38,39]. Another common 

feature of the reported studies is the use of Leeson's model [40] as the standard model for 

phase noise in oscillators. The oscillator topology used by Leeson is illustrated in Figure 

1.3. Leeson's oscillator model is based on heuristic arguments to explain how the low 

frequency 1/f noise is upconverted to the oscillator sidebands due to circuit nonlinearities. 

In this model several assumptions are made: (1) The amplifier has high gain and limits at 

a level corresponding to the output power level. This assumption implies power 

compression of the amplifier resulting in strong nonlinear behavior. (2) The limiting 

action of the amplifier removes the AM component of the noise. (3) The oscillator 

operates at the center frequency of the bandpass resonator. (4) The noise source 

corresponds to the noise figure of the amplifier and any other additional noise sources. (5) 

Oscillations will occur where the loop gain is unity with a loop phase shift of 360° (or 

Resonator 

Noise 

Limiting 
Amplifier 

Figure 1.3. Leeson's oscillator model. 
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multiple). From Leeson's model, the oscillator's phase noise performance can be 

improved by maximizing the output power of the oscillating signal, minimizing the noise 

figure of the amplifier and any other 1/f noise sources in the oscillator, and maximizing the 

loaded Q of the feedback resonator. This model provides a qualitative analysis of the 

oscillator phase noise and does not evaluate the dominant noise contributors or the amount 

of 1/f noise upconversion due to nonlinear circuit components. 

In the application of Leeson's model for acoustic resonator based oscillators, there 

appears to be conflicting results on the optimization of phase noise performance inside the 

resonator bandwidth. Additive noise such as shot and thermal noise generated by the 

amplifier circuit is upconverted inside the resonator half bandwidth resulting in a l/f^ 

power spectral density. Standard theory takes the stand that phase noise can be suppressed 

by maximizing the loaded Q, Ql. of the oscillator circuit. However, as Parker [41] points 

out, resonator insertion loss and loaded Q are related, and one cannot arbitrarily increase Ql 

without increasing the insertion loss. A larger insertion loss results in a larger amplifier 

gain in order to satisfy the unity loop gain criterion for oscillation which increases the phase 

noise. Parker claims that the two competing effects result in an optimum loaded Q of 

approximately one half the unloaded Q and an insertion loss of about 6 dB. 

The effect of increasing the loaded Q on modulation noise sources, such as flicker or 1/f 

noise sources, has also been challenged. In a report by Curtis [42], the level of 

upmodulated flicker noise depends on whether the amplifier or the resonator is the 

dominant source of 1/f noise. In this study, the flicker noise effects of SAW resonators are 

investigated and related back to the oscillator noise performance. If the amplifier is the 

dominant source of flicker noise, increasing the loaded Q will reduce the oscillator flicker 

noise level as predicted by the Leeson model. However, if the resonator is the dominant 

flicker noise source, changing the loaded Q will have no effect on the upconverted flicker 

noise in the resonator bandwidth. A possible explanation given for this behavior is that the 
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resonator flicker noise is nearly independent of loaded Q. Parker [41,43,44] attempted 

experimentally to verify this claim by changing the loaded Q on four SAW resonators as the 

1/f noise level was measured. The results are sketchy, however there appears to be weak 

dependence on loaded Q. The study did find that there exists a strong relationship between 

the unloaded Q, Qu, and the flicker noise level for quartz acoustic resonators. The power 

spectral density of frequency fluctuations varied approximately as Qu"^ . However, this 

relationship breaks down for higher frequency quartz bulk and surface wave resonators 

when they are not operating near their material limit. This implies that high frequency 

devices with low unloaded Q may possibly not follow this relationship, however, no data 

is given to reinforce this postulation. 
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CHAPTER 2. PIEZOELECTRIC - VISCOELASTIC ANALYSIS 

Piezoelectric Theory 

The utilization of elastic wave devices for the purpose of chemical sensing is based upon 

the linear theory of piezoelectricity. Piezoelectricity provides the coupling between the 

mechanical properties such as stress and strain and the electrical properties of the crystal. 

More specifically, in piezoelectricity, the equations of linear elasticity are coupled to the 

charge equations of electrostatics by means of the piezoelectric constants. In the simplest 

terms, the application of an alternating electric field to the electrodes of the resonator sets up 

a propagating elastic wave mode depending upon the symmetry of the crystal, i.e. the 

mechanics of elasticity, and the ability of the electric field to couple to the mechanical 

motion by the piezoelectric constants. The time-harmonic linearized anisotropic 

piezoelectric equations which form the basis for this analysis are governed by the stress 

equation of motion or Newton's Law [45]: 

(2.1) 

the strain - mechanical displacement relationship: 

(2.2) 

the charge equation of electrostatics or Gauss's Law: 

3xi (2.3) 

the electric field - electric potential relations: 
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(2.4) 

and the constitutive relations: 

~ (''ijkl Sfcl - Cjaj Et (2.5) 

D i e j u  S y  E U c  E j - (2.6) 

where the subscripts indicate summation over that index ( i j,k,l= 1,2,3) in Cartesian 

coordinates. The partial derivative with respect to a spatial coordinate xj is expressed as that 

index preceded by a comma, i.e. uj j is the partial derivative of the ui component with 

respect to the xj space coordinate. The variables used are listed below: 

Ty; Stress component (N/m2) 

uij: Mechanical Displacement component (m) 

p: Density (kg/m^) 

to: Radian Frequency (rad/s) 

Dj: Electric Flux Density component (C/m^) 

({): Electric Potential (V) 

cijki: Anisotropic Elastic Tensor component (N/m) 

^ijkl^ Viscosity Tensor component (N s / m2) 

ekij: Piezoelectric Tensor component (Cym2) 

Eiic: Permittivity Tensor component(F/m) 

The anisotropic nature of the piezoelectric crystal necessitates the inclusion of the elastic 

tensor of rank 4, cijki, the piezoelectric tensor of rank 3, ekij, and the permittivity tensor of 

rank 2, Eik- In this analysis, a phenomenological viscous loss tensor is included which 

accounts for all loss associated with the particular elastic constant. 
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Before proceeding, the assumption given by the electric field - electrical potential 

equation, Eq. (2.4) should be considered. The quasi-static approximation is invoked 

which assumes that the presence of an elastic wave in the crystal does not cause 

electromagnetic energy propagation. This implies that there is no coupling between E, the 

elastically generated electric field, and the magnetic field, H. This assumption is one which 

is bome out experimentally [45] since no extra acoustic loss mechanism has been observed 

through coupling to an electromagnetic radiation [20]. Formally, the quasistatic 

approximation states that insignificant errors are introduced if the rotational (or 

electromagnetic) part of the electric field is neglected [45] and thus no acoustically 

generated magnetic field is present: 

VxE =  Vx(E^+E ' )  

= V X E' = 0 (2.7) 

from which the quasi-static (or irrotational) field can be represented as the gradient of a 

potential: 

E' = -V(l) . 

Note that quasi-static does not imply non time-varying fields. Thus, the electric field being 

generated by the elastic strain wave propagates at the acoustic velocity and it is this effect 

which accounts for the significant time delay of piezoelectric devices since the acoustic 

velocity is much slower than the velocity of light in the media. 
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Elastic Wave Theoiy 

In this analysis, the composite piezoelectric resonator is coated with a polymeric 

overlayer which is characterized as being viscoelastic. A material is said to be viscoelastic 

if it combines characteristics of both liquids and solids. Thus, the stress would be 

proportional to not only the strain as in Hooke's Law for a solid body: 

o = G7 

but also to the time rate of so^ as in a Newtonian liquid: 

where a is the shear stress, y is the shear strain, t| is the shear viscosity and G is the 

modulus of shear elasticity. For AC steady state analysis, the modulus of elasticity for the 

viscoelastic overlayer is expressed as a complex quantity [46]: 

G*  =  G '  +  jG"  .  (2 .8 )  

G' is the elastic or storage modulus which is the component in-phase with the strain of the 

ratio of the stress to strain and is a measure of the energy stored and recovered per cycle of 

sinusoidal deformation. G" is the loss modulus which is the ratio of the 90° out of phase 

stress component to strain and is a measure of the energy dissipated or lost per cycle of 

sinusoidal deformation. Alternatively, the modulus of elasticity in the complex plane can 

be expressed as the magnitude of the peak stress to peak strain and the phase angle 5(a)) 

between stress and strain: 

1g1=VG'^ + G"^ 
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5 = tan-ij^2lj . (2.9) 

For time harmonic or periodic excitation, measurements at a given frequency provide 

simultaneously two independent quantities, either G' and G", or IG*I and tan(5). The loss 

tangent, tan(5), is defined as the ratio of the loss modulus to the storage modulus. Thus 

for low loss films characterized as being Hookean, tan(5) «1, whereas for films with high 

loss modulus characterized as being Newtonian, tan(5)» 1. For the case of cross-linked 

or solid polymers that do not flow at steady state, the Voigt model is usually used [47] 

which assumes that the total stress is the sum of the elastic, G' (Hookean), and the 

viscous. COT] (Newtonian), components. The loss tangent for the Voigt model can be 

expressed as tori/G'. For low loss films characterized by a small viscosity, the loss tangent 

is small which corresponds to a small phase lag between the peak stress and peak strain. 

Note that there are limitations in the definition of the complex elastic modulus. Over 

decades of frequency, G' and G" are not independent and can be interrelated [46]. 

However, since this analysis is confined to frequency changes over a relatively narrow 

bandwidth for piezoelectric resonators, the frequency independent elastic modulus 

approach can be used. 

The propagation of a longitudinal wave in a viscoelastic material is not as simple as for 

the case of the shear wave. The evaluation is complicated due to the presence of both bulk 

and shear components in the clastic moduli [48]. For longitudinal waves, the longitudinal 

modulus is defined by L* = L' + j L" which is a linear combination of the bulk, B*, and 

shear, G*, moduli: L* = B* + 4 G*/3 [49]. For an elastic isotropic medium in the absence 

of viscous losses, only two independent elastic constants exist, "K and ji, the Lame' 

constants. The latter is the shear elastic modulus which is used in the place of G*. The bulk 
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moduli describe the elastic modulus for a spherical or hydrostatic stress in which each 

normal stress component is 1/3 TfcJc and all shear stresses vanish: 

lTkk = Bskk (2.10) 

for which B is given as [49]: 

B = X + ̂ \i . (2.11) 

Thus, the resulting longitudinal elastic constant can calculated: 

L  =  B+ | -G  =  ̂  +  ̂ ^  +  | n  
3 3 3 ^ 
= ^ + 2^1 . 

(2.12) 

As in the case of the shear elastic constant, a Voigt model is used with frequency 

independent elastic constants: 

L  =  A.  +  2 | i+ j ( i ) (X+2^ ' )  (2 .13 )  

which contain a longitudinal viscosity X'+ 2\i' and is characterized by a single relaxation 

time being the ratio of the longitudinal viscosity to the storage modulus. Formally, the 

stress - strain relation for viscoelastic media can be expressed 

Ti j = K + >1.) +j V) 

where 6i j is a Kronecker delta function. 
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One Dimensional Resonator Admittance Analysis 

The composite thickness mode resonator is shown in Figure 2.1. The resonator is 

considered to have infinite lateral dimensions with thickness dimension X3. The electrodes 

are located at X3=0 and X3=h. The viscoelastic overlayer is located on the top electrode 

and will occupy the thickness dimension between X3=h to X3=h+L. No approximations 

are made in this general analysis pertaining to the stress variation or particle displacement 

due to variation in thickness of the overlayer. This is indeed the case for the TFR due to 

the thin aluminum nitride (AIN) piezoelectric membrane. For the TFR to support a 

fundamental resonance frequency of 1 GHz, a membrane thickness of approximately 5 

is necessary for one half of an acoustic wavelength. When the electrode diameter is large 

compared to the crystal thickness, variations in particle displacement in planes parallel to 

the surface may be neglected in comparison with variations across the thickness, allowing a 

one-dimensional model to be applied [28,29,33,50]. This approximation is valid for the 

TFR since the electrode diameter is 400 jim as compared to the AIN thickness of 5 jmi. 

A X3 
Viscoelastic Overiayer ^ 

A 
Massless Electrode 

L ^X2 

XI 

Piezoelectric 

Y I 

Massless Electrode 

Figure 2.1. Thickness mode piezoelectric plate resonator. 
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(2.16) 

If the lateral dimensions of the TFR are assigned to be the XI and X2 axes with the 

thickness dimension being X3, the one-dimensional analysis is enforced by setting all field 

variations in the XI and X2 dimensions to zero which results in all derivatives in the XI 

and X2 directions to zero. Applying these assumptions to equations (2.1) through (2.6) 

yields: 

T3 j3  =  -pw^Uj  (2 .15 )  

D j j  =  0  

T3j = (C3jk3 + jQ)Tl3jk3) Uic,3 + e33j (J).3 

D3 = C3k3 " £33 <1^,3 . (2.18) 

Substituting Eq. (2.18) into Eq. (2.16) and solving for <]),33 give; 

't'.33 = ̂  Uk.33 
£33 . (2.19) 

Substituting Eq. (2.17) into Eq. (2.15) and eliminating <>,33 using Eq. (2.19) results in: 

S3jk3 Uk,33 + P tO^ Uj = 0 (2.20) 

where 

= C33i C3k3 
C3jk3 = C3jk3 + —I + jwn3jk3 

fc33 (2.21) 
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and where RE[ ''"ajks ] is the "Piezoelectrically Stiffened" elastic modulus. Integrating Eq. 

(2.19) twice results in the expression for the electric potential: 

,j,=-£2Jiiui. + Ex3 + F 
£33 (2.22) 

where E and F are constants of integration. 

Before deriving expressions for pure-mode loci of thickness modes, simplification in 

the analysis can be taken by recasting the tensor relations from engineering notation to 

matrix notation: 

Engineering (ij or kl) 11 22 33 23,32 31,13 12,21 

Matrix I 2 3 4 5 6 . 

The piezoelectric material which will be considered in this analysis is Aluminum Nitride 

(AIN) which is a hexagonal crystal of the 6mm class [20], In an analogous manner, this 

analysis could also be derived for the quartz crystal microbalance (QCM). The pertinent 

equations and solutions for the QCM are derived and expressed in Appendix A. The 

permittivity, elastic, and piezoelectric matrices for the hexagonal crystal structure in matrix 

notation takes the forms; 

Ell 0 0 

0 Ell 0 

0 0 633 
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CH C12 C13 0 0 0 

C12 c i l  C13 0 0 0 

ci3 C13 C33 0 0 0 

0 0 0 C44 0 0 

0 0 0 0 C44 0 

0 0 0 0 0 C66 

0 0 0 0 ei5 0 

0 0 0 ei5 0 0 

631 631 633 0 0 0 

Applying the intrinsic material tensors of this class to Eq. (2.20) yields a set of three 

differential equations governing the steady state particle displacement: 

(C55+jCOr|55)ui,33 + pQj2ui =0 (2.23) 

(c44+ja3ri44)U2.33 + p 10^ U2 = 0 (2.24) 

^33 U3.33 + p 0)2 U3 = 0 (2.25) 

Thus, the thickness mode piezoelectric resonator supports the propagation of three acoustic 

waves, one longitudinal described by Eq. (2.25) and two shear, Eq. (2.23) and Eq. (2.24). 

In the same way, the potential equation, Eq. (2.22), can be written for this class of 

material: 
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(j) = -^211U3 + E X3 + F 
E33 . (2.26) 

The stress components can also be expanded out for this class: 

T31 = (C55 + jwTiss) U1.3 (2.27) 

T32 = (C44 + jtOTl44) "2.3 (2.28) 

T33 = (C33 + jfJ1l33) U33 + 633 "{".S . (2.29) 

In a similar fashion, the three normal stress components for the isotropic viscoelastic 

overlayer can be expanded from Eq. (2.14): 

T31 =(n+jtO|l) ui,3 (2.30) 

T32 ={u+jwn) U2,3 (2.31) 

T33 = (>. + 2|I + jC^A, + 2^1')) U3,3 (2.32) 

Substituting the three isotropic stress equations, Eq. (2.30, 2.31, 2.32), into Newton's 

law, Eq. (2.1), results in a set of three differential equations which govern the steady - state 

particle displacements in the viscoelastic overlayen 

Ui,33 ^ + P to^ui =0 (2.33) 
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"2,33 |1 + p 0)' U2 = 0 (2.34) 

(2.35) 

where 

X + 2ii = k + 2n + jcojx + 2|i') 

^ = H+ja)ja' 

Note that the appearance of three mutually orthogonal particle displacement waves is more 

apparent in the viscoelastic overlayer since the first two equations, Eq. (2.33 and 2.34) are 

controlled by the shear Lame' modulus, (l, while Eq. (2.35) contains the longitudinal 

elastic modulus, X + 2̂ I. 

Typically, in most thickness mode resonators, the orientation of the electric field and cut 

of the piezoelectric crystal is such that only one mode is excited. For the case being 

analyzed, note that the applied potential is coupled only to the particle displacement in the 

thickness dimension, u3, by the piezoelectric constant 633 as expressed in Eq. (2.26) which 

in tirni results in a pure mode longitudinal loci. In other words, the excited modes are 

characterized by eigenvalue expressions of particle displacements that include a 

piezoelectric stiffening term. The piezoelectrically stiffened elastic constant as expressed in 

Eq. (2.21) can be rewritten as: 

C33 = C33 - jtOTl33 = C33 + 
(2.36) 

or 
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- e-»t-
C33 = C33 -

£33 
= 033(1 -ki) 

(2.37) 

where longitudinal excitation piezoelectric coupling coefficient ko is defined as 

kl = =^ . (2.38) 
C33 633 

The thickness excitation requirement of a piezoelectric stiffening term in the eigenvalue 

expression is equivalent to requiring nonzero piezoelectric coupling, with the value of the 

piezoelectric coupling indicative of the strength of the excitation [51]. For the AIN 

resonator, the piezoelectric coupling is ko^ = 6.02e-2, or 24.5%, while the coupling 

coefficient for the AT QCM being analyzed in Appendix A is ko^s 0.00774, or 8.8%. 

Applying the longitudinal mode operation, Eq. (2.25) and Eq. (2.35) can be rearranged 

to form the wave equation for the particle displacement in the piezoelectric resonator and 

viscoelastic overlayen 

U3J3 + U3 = 0 

"3,33 + U3 = 0 

(2.39) 

(2.40) 

where the complex propagation constants for the piezoelectric resonator and viscoelastic 

overlayer are: 

pco2_  p(o2  
— — Ka 

^33 (.33+^+j(On33 

£33 (2.41) 
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X+2\i X+2n+jto(A.+2|i') 

p 03^ _ p 

(2.42) 

Note that for both layers, the propagation constant is complex due to the inclusion of 

viscous damping. The assumed solution forms for the layers can be extracted from Eq. 

(2.39) and Eq. (2.40): 

where A, B, C and D are constants of integration to be determined. 

Traction - free boundary conditions are employed at the electrode-air and overlayer-air 

interface which assume the air surrounding the composite resonator exerts no appreciable 

forces on the interfaces. This condition requires that the normal stresses vanish at the air-

electrode interface, X3=0, resulting in: 

U3 = A sin(ka x) + B cos(ka x) (2.43) 

U3 = C sin(kL x) + D cos(kL x) (2.44) 

C33 U3.3 + E e33 = 0 

which is expressed using the assumed solution form, Eq. (2.41), as: 

A[c33kJ +Ee33 = 0 . (2.45) 

Accordingly, the normal stress at the overlayer-air interface (X3 = h + L) must also vanish: 
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T33 = X, + 2n U3,3 = 0 

which can be formulated using the assumed solution form for the particle displacement, Eq. 

(2.42): 

C [ + 2^ kt cos [ku(L + h)]] - D [ X + 2|a kt sin [kiJL + h)]] = 0 . (2.46) 

Across the resonator-overlayer interface, the mechanical variables which must be 

continuous are the normal stresses and particle displacements (or particle velocity). Using 

Eq. (2.43) and Eq. (2.44), continuity of particle displacement (X3 = h) results in: 

A sin (ka h) + B cos (ka h) - C sin (kt h) - D cos (kL h) = 0 . (2.47) 

Stress continuity at the piezoelectric - overlayer interface can also be expressed as: 

A [ c^ ka cos (ka h)] - B [ ka sin (ka h)] - C [ku X + 2|a cos (kL h)] 

+ D [kL A, + 2n sin (kL h)J + E 633 = 0 

The last two boundary conditions express the application of the driving electric potential, 

V, at the top electrode (X3 = h) which udlitzes Eq. (2.26) and Eq. (2.43): 

Af ^sin (ka h)l + B [ ̂ cos (ka h)l + E [h] + F = V (2.49) 
L £33 J L £33 J 

while the bottom electrode (X3 = 0) is forced to zero: 
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B [g].F = 0 . (2.50) 

The six boundary condition equations, Eq. (2.45) through Eq. (2.50), form a 6*6 matrix 

equation of the form M XI = X2 where M is given by: 

0 0 0 633 0 

0 0 cTTkLCO^ki^L+h)) -cTT kt sii(kiiL+h)] o 0 

sin(ka h) cos(ka h) - sin(kL h) - cos(kL h) 0 0 

c^kacos(kah) -c^^ ka sin(ka h) -kLcTTcos|kLh) kLcHsinjkLh) 633 0 

^s in (kah)  ^cos (kah)  0  0  h i  
£33 E33 

633 
0 S! 0 0 0 1 

and the vectors XI and X2 are: 

X1=[A B C D E  F f  

X2=[ 0 0 0 0 V of . 

Note that for simplicity, the isotropic longitudinal elastic constant, A. + 2^, has been 

replaced by its equivalent isotropic tensor component en. 
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To calculate the electrical impedance, an expression of the electrical current must first be 

found. The total ciurent passing through the piezoelectric crystal can be expressed using 

Maxwell - Ampere's Law: 

_ . a* 

VxH = Jto ta t  =  D (2 .51)  

where H is the magnetic field intensity, J is the current density, and D is the electric flux 

density. The dot above the electric flux density vector represents the partial derivative with 

respect to time. The total current flowing into the resonator can be solved from Eq. (2.51): 

1 — I Jtotal'd S = -jcoD3A 
js (2.52) 

where j(0 comes about from the partial time derivative of the time harmonic current. The 

minus sign is due to the surface normal being in t!ie +X3 direction while the current is 

dutcted into the electrode in the -X3 direction. The electric flux density in the X3 direction 

is found form the constitutive equation, Eq. (2.18), and the potential expression, Eq. 

(2.22): 

D3 = 633 U3.3 - £33 (j),3 

= 633 U3,3 - £33 U3,3 + E| 

= -e33E . (2.53) 

Thus, the admittance of the viscoelastically loaded resonator can be calculated by dividing 

the current by the applied voltage: 
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•y _jcoAe33E 
V (2.54) 

The only constant necessary for the calculation of the admittance is E which is solved for 

by invoking Kramer's rule resulting in the admittance expression for the composite 

resonator: 

Yin = - j(0Ae33 cos (kah) tan (kLL)4-kaC33 sin (kah)] 

cos (kah) I kL h {U2n) tan (ktL) + 2 ̂  
L ^33 

+ sin (kah) kahc5J-^^§l^tan(kLL) 
»^aC33 ^33 

- 2  £3£ 
^33 

(2.55) 

The complete solution to all the six unknown constants of integration is given in Appendix 

B. 
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CHAPTER 3. VISCOELASTICALLY LOADED RESONATOR CIRCUIT ANALYSIS 

Electrical Model Extraction Analysis 

Consider first the case where the thickness of the overlayer, L, goes to zero. If the 

expression for the static parallel plate capacitance, Co, of the resonator 

h (3.1) 

and the complex coupling coefficient k: 

633^ 
k2 = -£22^ = _ _ e33C33 _ Kp^ 

^^33 (C33+j(«ni33)e33 /| I ^ 
(3.2) 

where 

C33 (3.3) 

arc substituted into the admittance expression, Eq. (2.55), the impedance of the resonator 

factors down to the standard thickness mode form [20]; 

Zjn = • 
jojCo 

tan, „ 
1 - k2—-A_2. 

(¥) 

k.h 
2 

(3.4) 
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Parallel resonance for the unloaded, lossless resonator is defined as the frequency where 

the impedance goes to infinity which occurs when the phase across the resonator is nn 

radians on 

= n=1.3.5... (3.5) 

Zero - phase series resonance is defined as the frequency where the impedance is zero for 

the unloaded lossless resonator which results in a transcendental equation; 

l^=K2tan(^). (3.6) 

The solution to the series and parallel resonance frequency for the unloaded low loss 

resonator is graphically analyzed in Figure 3.1. The series and parallel resonance 

frequencies are determined by the intersection of the tan(kah/2) function and the straight 

100 -

•S *S 
S3 

^  0 -

1 

-100-

0 1 2 3 4 5 
Angle (radians) 

Figure 3.1. Graphical solution of the resonant frequencies of Eq. (3.4). 
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line of slope 1/k2. Note that the series resonant frequency occurs at a slightly lower 

frequency than the parallel frequency. The smaller the piezoelectric coupling coefficient, K, 

the closer the two frequencies approach each other since the slope of the straight line 

becomes greater. 

The inclusion of loss in the resonator affects the resonant frequencies due to the 

additional phase of the small x factor as given in Eq. (3,3). For the viscoelastically loaded 

resonator, the admittance equation can be put in a more tractable form by substituting in the 

frequency dependent phase across the piezoelectric resonator ij/ = ka h as; 

(k,h)2 = =Ei5" 
(C33 +ja)Tl33) 

Pa CO^ h^ 

(3.7) 

and defining the complex factor A: 

(3.8) 

after which the admittance equation, Eq. (2.55), can be expressed as; 

(A cos (vj/) + sin (\J/)) - KI (2 + A sin (\|F) - 2 cos (\J/)) 
(3.9) 

Note that the complex factor A contains all the viscous, elastic and phase properties of the 

viscoelastic overlayer. The phase across the overiayer, kiJL, is also dependent upon the 

effective viscosity which is evident by the complex propagation factor kL. 
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The physics of operation of the composite resonator can alternatively be viewed by 

elastic wave theory where the resonator is the source of the elastic waves and the 

viscoelastic layer acts an acoustic waveguide characterized by an effective acoustic phase 

and attenuation. Thus, in the same way that electrical transmission lines are characterized 

by transmission and reflection of voltage and current traveling waves, the acoustical 

transmission line is characterized by stress and particle velocity traveling waves. The 

modeling theory used in the classic Mason model [18,19,20] is based upon this analogy 

and is mathematically equivalent to the present analysis. The acoustic characteristic 

impedance of a medium with density, p, and modulus of elasticity, c, is defined as [20]: 

where the minus sign is necessary since the sU^ess, T, and particle velocity, v, arc 180° out 

of phase. The input impedance of the overlayer bounded by air which provides no restoring 

force as stated by the traction free boundary condition is thus analogous to an electrical 

transmission line terminated in a short. It is interesting to note that the complex factor A 

can alternatively be expressed in the following form: 

which is the ratio of the input acoustic impedance of the viscoelastic overlayer terminated in 

a short (stress free) to the characteristic longitudinal wave impedance of the source 

resonator. The acoustical coupling by the overlayer results in an overall perturbation of the 

resonant cavity since resonance occurs when the cavity thickness is an odd multiple of half 

the acoustic wavelength as mathematically expressed in Eq. (3.5). Note that this resonance 

z  =  - X = ^  (3.10) 

(3.10) 
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is described by the parallel resonance where at this frequency a standing longitudinal elastic 

wave is generated across the thickness of the acoustical cavity. 

Thus, the overall resonance behavior of the composite acoustic cavity is influenced by 

the acoustical coupling of the overlayer film. Since the resonator is piezoelectric, any 

mechanical perturbations are reflected in the electrical admittance as seen in Eq. (3.9). 

Such perturbations include elastic, viscous, thickness and mass density changes. Each of 

these mechanisms are going to have a separate effect of the amplitude and frequency 

(phase) of operation of the composite resonator. It is thus in the aforementioned effects 

where the motivation for modeling the electrical behavior lies. The physical properties of 

the resonator and overlayer should be explicitly related to the elements of the circuit model. 

Since the electrical admittance (or impedance) of the resonator can readily be measured, the 

modeling could provide information on the relative sensitivities or measured tendency of 

the particular measurement to any changing physical effect. Also, if the model is accurate, 

it could also be used to extract out the physical properties of the film. Since the ultimate 

use of the sensor resonator lies in it's employment in an oscillator circuit, the electrical 

model could also be used to design the oscillator circuitry to handle the expected operating 

environment. 

Butterworth - Van Dyke Equivalent Circuit Derivation 

The Butterworth - Van Dyke (BVD) circuit model as illustrated in Figure 3.2 is typically 

used to model the impedance behavior of the unloaded resonator in the range of frequencies 

near resonance. The BVD model consists of a constant parallel plate capacitor Co given by 

Eq. (3.1) in parallel with the motional or acoustic impedance parameters. At frequencies 

out of the resonance bandwidth, the impedance of the resonator is swamped out by Cq, 

while near resonance the motional arm dominates the impedance behavior. Under the 
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R1 LI CI 

' ' 
Co 

Figure 3.2. Butterworth - Van Dyke equivalent circuit model of unloaded 

piezoelectric resonator. 

assumption that the loaded resonator will simulate some resemblance of the BVD circuit 

model, the derivation begins by noting that the admittance of the BVD circuit consists of the 

sum of the fixed plate capacitance and motional arm admittance Ym-

Yjn — jtflCo + Yn (3.11) 

Eq. (3.9) can factored into a form similar to Eq. (3.11): 

Yjn ~j®Co 1  + -

^ (2 + A Sin (v)-2 cos (»}/)) 

(A cos (\|/) + sin (\|/)) - ̂  (2 + A sin (\j/) - 2 cos (y)) 
(3.12) 

from which the motional branch impedance can be extracted: 

Zjti — 
jtoCo 

-1 + 
1+ A cot (\|/) 

(3.13) 
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Referring back to Figure 3.1, it can be observed that if the piezoelectric coupling 

coefficient, K, is small the resonance and antiresonance frequencies are relatively close 

together. For AIN and quartz piezoelectrics, this is an accurate statement. Thus, the 

resonance behavior of the device occurs near the poles of the tan(kah/2) function or where 

the phase of kah is Njt radians, N being odd integer multiples. The tan(kah/2) and cot(kah) 

functions can be expanded using Mittag - Leffler expansions [52]: 

tan 
4\|/ 

2' (N Ttf - (3.14) 

cot (X}/)! 
-2\j/ 

(N 7l)^ - \|/^ (3.15) 

where only the dominant pole terms are kept. Substituting Eq. (3.14) and Eq. (3.15) into 

Eq. (3.13) results in: 

Z„,= 
jfflCo 

- 1  + '  
((N Jl)^-\t/^)\i/-2 A\}/^ 

A ((N TCp - \j/2) + 8 \|/ 

jtoCo 
^ ^ (N7t )^ - \ j / ^ -2Ay 

8 (3.16) 

where only the first order terms of the small quantities A and ((Nji)2 - \}/2) are kept. Eq. 

(3.16) can be expanded into its real and imaginary components: 

Zm - 1 

jwCo 
-1 + 

(N (1 + jx) -y^o^-2 xi/q VTT^ (a, - jAj) 

8 KS (3.17) 
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-1 + 
(N Ttp (1 + jx) - - 2 Vo (l + j|) (a, - jAi) 

j©Co 8 4 (3.18) 

where a binomial expansion is used in Eq,(3.17) if the losses in the piezoelectric crystal are 

considered small. Further expansion of Eq. (3.18) results in: 

Thus, the BVD equivalent circuit modified by the inclusion of the viscoelastic overlayer 

motional impedance parameters assumes the circuit shown on Figure 3.3. Note the 

omission of any motional capacitance in the viscoelastic overlayer. The motional 

capacitance is used as an indication of any changes in the elastic behavior of the material. 

However, as it will be shown, this approximation is for thin film layers for which any 

elasticity variations are reflected in R2 and L2 by virtue of the elastic wave velocity. Using 

the elastic wave velocity relation: 

toCoSK^ coCoSi^ jo)Co8i^ 

= Ri + R2 + + j(oL2 
(3.19) 

(3.20) 
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R1 LI CI 

e 
Cb 

Piezoelectric Crystal 

R2 L2 

Viscoelastic Overlayer 

Figure 3.3. Modified Butterworth - Van Dyke circuit model for a piezoelectric resonator 

coupled with a viscoelastic overlayer. 

the resistance parts of Eq. (3.19) can be simplified down to: 

(a,-|a,) 

SCoKo^PaVa^ 4CoKo^Va (3.21) 

where R] is the motional resistance for the piezoelectric crystal and R2 is the motional 

resistance for the viscoelastic overlayer. Both of these resistance's represent losses which 

are directly proportional to the viscosity of that layer. The motional capacitance can be 

directly extracted from Eq. (3.19); 

Cj - SCqK^ _ 8 A 

(N nf (N Ttp h C33 (3.22) 
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and the motional inductance of the piezoelectric layer can be deduced from the motional 

capacitance: 

, + _ (NTip _ 1 
i-'l — _ w (OS OX ^ —I r* — —r— 

(Ô CoSxi (Op- 8Coî  (Op C| 

8e332h + PaCO^h^E33 

8 tO^ A £33 6332 (3.23) 

The motional arm inductance of the viscous overlayer can also be extracted from Eq. (3.19) 

as: 

L2 = 
_Vt|Ar + |Ai) 

4Q)2CoKi . (3.24) 

In order to calculate the motional resistance and inductance in the viscoelastic overlayer, the 

real and imaginary components of the complex A term should be factored out. This 

approximation involves using Taylor series expansion of the tangent function of the form: 

tan (x) = x + ̂  
(3.25) 

which when applied to A: 

A = PL X+j(0^ T 
Pa(c33+jQ)Tl33) 

' ©L 

,V(;i+j0x) ^ ,V(x+jcoX.) 
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toLpt  (0^ PL^ 

1^V(C33+jC0Tl33j 3 V^Y(c33+j(OTl33) (^+j(0x) (3.26) 

which results in less than one percent error up to thirty degrees of phase. Note that if only 

the first term of the expansion is kept, the motional resistance of the overlayer is zero. If 

the losses in the piezoelectric are small. Binomial expansions of the form (1 + x)*" = 1 - nx 

can be used on Eq. (3.26) for which the real and imaginary components are factored out: 

(OLpt  C0^LPlT133  ^ 

VaPa 2 C33 VaPa 

CO^ L3 PL 1 -
a)^33X 

2c^ 

SVaPaVL^ SVapaVL^ (3.27) 

The motional resistance for the viscoelastic overlayer is first calculated using Eq. (3.21) 

and the real and imaginary components of Eq. (3.27) resulting in: 

R2= [ i+ i fe f l  
12CoKo2va2vL'»Pa^ 4 \ C33 / J (3.28) 

In a similar manner, the motional inductance of the viscoelastic overlayer can be calculated 

from Eq. (3.24) and Eq. (3.27): 

L2 = 
\Ko(Ar + |Ai) 

4a)2Coi^ 

PLLh 

4CoKo^Va2 Pa 
1+ 

3 vl^. 4\ C33 I 
(3.29) 
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Expanded Circuit Model Derivation 

The modified BVD circuit model for the viscoelastically loaded resonator in the previous 

section illustrates the simplest circuit topology at which extraction of material parameters 

can be performed. As physically expected, the motional resistance of the overlayer was 

directly proportional to the its viscosity while the motional inductance was directly 

proportional to mass density variations. However, the omission of any motional 

capacitance in the viscoelastic overlayer related to elasticity variations warrants further 

investigation. The derivation for alternate circuit topologies begins with keeping higher 

order terms in the approximation made at Eq. (3.16): 

A ((N Ttp - + 8 \j/ K? 

((N 7t)^ - \)/ - 2 A 

jtoCo K? A ((N 7i)^ - \j/2) + 8 \j/ 8 

-8 - 2 A \|/ 

((N TCp - \|/2) 

-8 - 2 A v 

Zi Z2 

8Ko^  +  2yoYl+jx(Ar- jAi )  ^ i  

J  C O  C q  8  ^ ^  
Zl Z2 . (3.30) 
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If the losses in the piezoelectric crystal are considered small, then the square root term in 

Eq. (3.30) can be expanded in a binomial series where only the first two terms are kept. 

When the real and imaginary terms are collected, the following circuit parameters can be 

extracted from the first part of Eq. (3.30): 

SKp^- f  2 \Ko VI  + jx (Ar- jAi )  

j 0) Co 8 Ko^ 

=jco 8 Kn^ 

8 to^ Co Ko^ 
+J© 

2 Vo (Ar +1 Ai) 2 Vo (ai -1 Ar) 

. 8 Q)^ Co Ko^ . 8 6) Co 

= jtoLia+jG)L2 + R2 (3.31) 

The parallel circuit combination of Zi and Z2 will next be extracted from Eq. (3.30): 

Zi = V VoVI +jx 
jtoCoK^A j(0CoKb^(Ar-jAi) (3.32) 

After a binomial expansion is performed on the square root term on Eq. (3.32) and the real 

and imaginary terms are collected, the following circuit parameters can be extracted for Zi: 

Vo(Ar-|Ai) Vo(Ai+|Ar) 
Z,= i + I \ 

j toCoKo^lAr  +Ai^)  (0  Co  Ko^  [Ar^  +  AH 

= ; + Rm 
J "Cm . (3.33) 

Similarly, the components for Z2 can be found: 
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- ((N ^ (N Kf( I+}%)• 

j CO Co 8 j 0) Co 8 Ko^ 

(Nj tp  , jm ,  (N7tpTl33  

j 0) Co 8 Ko^ 0)2 Co 8 Ko^ 8 Co Ko^ C33 

(3.34) 

In summary, the electrical components for this second possible circuit configuration are 

given below: 

R , =  (NitpTiaa (N;t)2Ti33h 

8CoKo2paVa2 8 A (3.35) 

Lib = 

where 

to2Co8l^ 0)2 A £33 

Pah^ 

to^CoSi^ 8 A 633^ 

Lja + Llb 

8Coi^ _ 8Ae3i2 

(N nf (N h C33 

4 A e332 3 vl2 
lafef 

4 I C33 /. 
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Rm — • 

CQLPL |j ̂ /tini33 

VaPa 

Cq KQ^ Vg (Ar^ + Ai") 

C — Co Kq^ Va 
V-'fTl ' . 

(Ar^ + Aj^) 
coh 

(0 LPL L /tOTl33\2| ^ 0)3 L3 PL ^ t0^33X /(aTl33p 

VaPa  \  {2033// 3v ,0 ,v i2 l  7r:zl \2C33/  12033/ /  SVaPaVL^ C33 X 

and 

.2 ^ 2 
Ar +Ai = 

toLpL 
o j^L^Pl  1  -

0)^33>-

2c^ , 
VaPa SVaPaVL^ 

0)^L-pLl"- + 
tO L̂pLll33 , \X 

, 2 C33 VaPa SVaPaVL^ 

The electrical circuit for this analysis is shown in Figure 3.4 which is referred to 

modified BVD 2. Note that no distinction can be made where the piezoelectric crystal 

R1 Lib CI 

He 
e-

Co 

Figure 3.4. Modified BVD 2 circuit model for a piezoelectric resonator loaded with a 

viscoelastic overlayer. 
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equivalent circuit ends and the viscoelastic overlayer circuit model begins. The two new 

circuit elements, Rm and Lm. are complicated functions of both the piezoelectric and 

overlayer properties and thus cannot be directly attributed to the behavior of either layer. 

One attribute of this circuit is that Cm contains the elastic constants of the viscoelastic 

overiayer which was not present in the previous development. 

A second alternative circuit topology can be found by starting with Eq. (3.16) again: 

, I ((Nlp-\|/')l|<-2Al|i^ 

A ((N 7t)^ - lj/2) + 8 V 

jcoCo 

-1 , ((N7C)2-H/2)V|; 2Ay 

Syic^ k2 A ((N 71)2 - \}f2) + 8 ^2 

-8Ko- + (N n f  + j Z (N k)2 -

j Q) Co 8 Ko^ j (DCoKb^( (N7r)^ - \ | /2 )  4 j (aCoKb^ 

2^2  Ay 

_ j(o(8Ko2 + \i>o2) (N n f  4. + JCEfL + _L 
OJ^C qSK O^  j toCoSKo^ (DC QSK O  ̂ J- + ;  ̂

Z3 Z4 

= j  C O L i  + : — + - r — ^  
•' jtoCi _L+_L 

Z3 Z4 (3.36) 

Z3 can be reduced down further to a parallel subcircuit of Z5 and Z6: 

Z3 = -
2\|/2 2Vo^( l+ jx)  

j to Co ((N nf - \}/2) j 0) Co Kb^ [(N 7t)2 (1 + j X) - Vo^] (3.37) 
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I = 1 
jwCoKo^CNnp jODCoKo^ +  ̂  

2Vo2 2(1+jx) ^ 

(3.38) 

where 

™ 2 . 2 vj/o^ . _ 
Z5 = r" = j <0—I =J TO Lx 

j to Co Ko^ (N 7t)2 0)2 Co Ko^ (N Tlf (3.39) 

Z6 = lil±M = 2 + __12L_ = -J^ + R, 
j tOCoKb^  j CO CoK o ^  tOCoKo^  J  ®  

Z4 can be expanded in the series combination of R2 and jtoL2: 

A\|f ^-\};oVT+jY(Ar-jAi) 

4ja )CoKo2 4 j toCoKo2 (3  41)  

-Vo( l+-Y)(^r - j^ i )  

4 j toCoKo2 

jt0Vo(Ar + |Ai) \J/o(Ai-|Ar) /J --If TU I--I ^ -•II 
L + 1 ^_^=J Q)L2 + R2 

4 to^ Co Ko^ 4 (0 Co Ko^ (3.42) 

The circuit elements for the third analysis is summarized below which is basically the same 

as BVD 1 except with the parallel Lx and Rx-Cx series combination as illustrated in Rgure 

3.5. This circuit will be referred to as modified BVD3 circuit model. Note that for this 

model the added elements: Rx, Lx, and Cx are not related to any of the overlayer material 
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parameters. Unfortunately, this will not result in any better description of the viscoelastic 

behavior of the overlayer. 

R, _ (N UP 1133 _(N TCF TL33H 
' 8COKO2PAVA2 8 A 6332 

^  _8e332h  +  paCa2h^E33 

8 0)2 A 633 6332 

— 8Coi^ _ 8 A 6332 

'~(Njr)2 ~{N7t)2hC33 

L2 = 
pLLh2 

4 A e332 
1+ ££iZ 

3 vl2 4 \ C33 / 

R2 =  to^L^h^ '  
12 Co Ko  ̂Va2 Vl"* Pa 

1 + 1 fMTl33f 
41 C33 / 

L x = - 2\J / o2  JJlL 2h3pa  

0)2 Co Ko^ (N 7C)2 Co Ko2 Va2 (N Tip A 6332 (N Ttf 

(2 = — A 633 
2hC33 

2x ^ 21)33 ^2Tl33h 

CO CO Ko  ̂ C5J Co KO2 A 0332 
(3.43) 
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Co 

Figure 3.5. Modified BVD3 circuit model for a piezoelectric resonator loaded with a 

viscoelastic overlayer. 

The full form admittance expression, Eq. (2.55) or Eq. (3.9), characterizes the 

admittance behavior of the compound resonator as a function of frequency. If one were to 

plot out the real and imaginary parts of the admittance as a function of frequency, there 

exists characteristic maxima in the real admittance and zero imaginaiy points in a frequency 

bandwidth. This frequency spectra is said to describe resonances of the compound 

resonator. A useful graphical tool used to describe the frequency behavior of the resonator 

in the vicinity of resonance is provided by the admittance diagram in Figure 3.6. The x-

axis or abscissa is the real part of the admittance, the conductance G, and the y-axis or 

ordinate is the imaginary part of the admittance, the susceptance B. As frequency 

increases, the admittance of the resonator traces out a circle in a clockwise manner. Note 

that if the admittance for the Butterworth - Van Dyke circuit model: 

Circuit Model Verification 
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Y =  G+jB =  Ri ,j +j(0Co (3.44) 

is formulated into the admittance polar diagram form, an equation for a circular locus of 

points results: 

which is a circle of radius l/2Ri centered at G=l/2Ri and B= (BCq. The utility of the 

admittance diagram permits the extraction of the various resonance frequencies of the 

composite resonator as well as direct calculation of the motional resistance Ri from the 

radius. The series resonance frequency, fs, is the frequency at which the motional or 

acoustic impedance parameters resonates and is defined on the admittance diagram as the 

frequency of maximum conductance. Slightly higher in frequency lies the low frequency 

(3.45) 

B 

1/Rl 

^ G 

Figure 3.6. Admittance diagram of the loaded resonator. 
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zero phase resonant frequency, fr, which is often confused with fs. The displacement in 

frequency between fs and fr is caused by the susceptance offset of the electrical parallel 

plate capacitance, (OCQ. Note that any external wiring or circuit capacitance's in parallel to 

the resonator add to this susceptance offset and thus affects the low frequency zero phase fr 

whereas the intrinsic series resonance is independent of the susceptance offset. The parallel 

resonance frequency fp is defined as the high frequency zero phase frequency point. At fr 

and fp the admittance is real, the admittance value at fr being large corresponding to a high 

current (low impedance) condition whereas the admittance at fp is small corresponding to a 

low current (high impedance) condition. 

The effects of the total parallel plate electrical capacitance can be deimbedded from the 

admittance diagram by subtracting off the susceptance COCQ. The circuit that remains 

should now be a function of the motional impedance parameters. Using the Butterworth -

Van Dyke model, this motional impedance arm consists of the resistance, Ri, in series with 

the reactance X, the series combination of the motional capacitance and motional 

inductance, X = coLi - 1/toCi. At series resonance, the motional inductance can then be 

calculated from the reactance expression using a differendal approach; 

from which the motional capacitance can be found: 

C 1 = 1 
(2 7Cfs)2Ll 

(3.47) 
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The quality factor or Q of the resonance is defined as the ratio of the maximum energy 

stored in the energy storing elements to the total energy dissipated per cycle at resonance 

which can be shown to expressed in terms of Rl, LI, and CI as: 

0 = lilU. = 1 G48) 
^  Rl  (ORICI*  

An alternative expression for Q can be formulated using the Q - bandwidth (QBW) 

approach where the QBW for the series motional impedance arm is the frequency interval at 

which the magnitude of the impedance is less than V2 * Rl. The value of Q is then defined 

by the ratio of the series resonance frequency to the QBW: 

Q = ̂  (3.49) 

from which the motional inductance can be calculated: 

LI=—SJ— (3.50) 
2tcQBW ^ ' 

and the motional capacitance can be calculated from Q and LI using Eq. (3.48). The 

solutions to the motional arm impedance parameters and Q are numerically equivalent when 

calculated using either the first differential approach or the second QBW approach. 

However, error is introduced in both formulations when implemented in swept frequency 

calculations. The error using the first differential approach lies in tiie use of numerical 

difference expressions to calculate the first derivative at a point. For instance, the central 

difference expression for the first derivative of a function f at a point xj with x spacing 

between consecutive points being h: 
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(3.51) 

where the numerical error is of order (h)^ as h —> 0. Discretization error is also present in 

the QBW approach since the frequency points which define the bandwidth must be found 

from discrete points. For any calculations in this analysis, both the differential and 

bandwidth approach are calculated simultaneously. Since both calculations should 

converge to the same result, this system verifies that no numerical error is introduced by the 

numerical discretization of frequency points. 

As stated earlier, the resonance condition of the composite resonator can be described by 

purely mechanical physics. Resonance occurs in the acoustic cavity when the frequency is 

such that the thickness is an odd multiple of half the acoustic wavelength. Thus, one way 

of verifying the frequency performance of the admittance expression is to compare it to 

earlier mechanical models. One such mechanical model is the treatment of Kanazawa [53] 

which developed the expression for the resonant frequencies of a viscoelastically loaded 

resonator. The resulting transcendental equation for this analysis can be written: 

where fo is the initial unloaded frequency, Af is the relative frequency change with respect 

to fo. No losses are assumed for the quartz resonator which is described by a density pQ 

and elastic modulus ^Q. The overlayer includes viscoelastic effects characterized by the 

shear modulus cl and viscosity til in the complex modulus of elasticity cL + jwilL- Figure 

3.7 illustrates the comparison of the resonance frequency variation for an 8.9 MHz 

VpQUQtan  (3.52) 
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Figure 3.7. AT QCM resonance frequency variation to polymer thickness for the 

AT - cut quartz resonator using the mechanical model, Eq. (3.52), and the full admittance 

expression. For this particular case, the parameters of the film were chosen arbitrarily to be 

CL = l.Oe? Pascals, til = 0.1 Pascal - sec. and p = 1000 kg m"3. The resonance 

frequency variation was calculated as the thickness of the viscoelastic overlayer was 

increased. Note that for the case considered, the two resonance frequency variations are 

virtually identical. However, no other information is available from the mechanical model 

since resonant frequency shift is the only output variable which depends on the viscoelastic 

overlayer loading. On the other hand, the electrical model includes the applied potential 

piezoelectric relationships which permit electrical as well as mechanical information to be 

analyzed for the various loading conditions. The mechanical resonance behavior of a 

resonator can be deduced from the admittance expression by forcing the admittance to zero. 

This is the zero current case where no external connections are made to the free standing 

full admittance expression and the mechanical model, 
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resonator. As Reed points out [29] the zero current condition or parallel resonance most 

closely resembles the mechanical resonance. The zero of the admittance expression. Eq. 

(2.55), can be formulated to be: 

where if the losses of the piezoelectric resonator are ignored and only the real part of the 

viscoelastic term on the right is used, the mechanical model of Kanazawa results. 

Furthermore, if the overlayer is considered purely elastic where the viscosity is zero, the 

classical condition for elastic wave resonance formulated by Lu and Lewis [10] results. 

The method of verifying the performance of the three BVD circuit models is one which 

is not easy to ascertain. The circuit models should trace the electrical admittance behavior 

of the admittance expression, Eq. (2.55), however information is lost since approximations 

were made to derive each circuit component in terms of its fundamental physical properties 

in a tractable manner. Typically, in most acoustic wave sensor applications, the useful 

information is the relative change in the physical operation of the device during the 

measurement. The most dominant measurable change is the resonance frequency variation 

caused by perturbations in the sensing polymer overlayer's mass density, thickness, 

elasticity and viscosity. Each of these effects could be evaluated separately however, more 

fundamental than the physical constants is the effect that each have on the polymer acoustic 

phase. The acoustic phase is defined as RE[ kL L] which is the argument of the tangent 

function of the complex factor A; 

(3.53) 

CL+jcont 
(3.54) 
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where the overlayer's elastic modulus is cl and its viscosity is "HL- For the longitudinal 

mode TFR, cL is the Lame' constant X, + 2|i while for the shear thickness QCM the elastic 

modulus cL is the shear elastic modulus Figures 3.8 and 3.9 illustrate two cases of 

series resonance frequency and motional resistance variation as the acoustic phase is 

changed by varying the thickness of the polymer film for an AT QCM. Figure 3.8 could be 

considered a highly viscous polymer film with elastic properties. In this analysis, the 

parameters of the film were selected to be = 1.0e7 Pascals, til =0.1 Pascal-seconds, and p 

= 1000 kg/m^ resulting in a loss tangent value in the working range of 0.56 for the 

frequencies considered. In Figure 3.8a, the three BVD model resonance frequency 

variations fall on top of each other and thus no apparent increase in accuracy is gained by 

using the higher order models. For this case, the resonance frequency variations of the 

BVD models follow the resonance frequency variation of the admittance equation, trace 

Adm. fs dev., with error less than 10% up to 65 degrees of acoustic polymer phase which 

corresponds to a polymer thickness of 2.4 ^im. Note that at this thickness, the effective 

motional resistance illustrated in Figure 3.8b of the composite resonator is 3481 Q resulting 

in a Q of only 117 for a device which has a unloaded Q of over 50,000. 

Conversely, Figure 3.9 could be considered the highly elastic case with low viscous 

damping. For this polymer film, the parameters were selected to be cl = l.Oe? Pascals, 

TIL =0.001 Pascal-seconds, and p = 1000 kg m*3 resulting in a loss tangent value in the 

working range of 0.0056 for the frequencies considered. In Figure 3.9a, the resonance 

frequency variations of the three BVD models trace that of the admittance expression with 

less than 10% error up to 51 degrees of polymer acoustic phase which corresponds to a 

thickness of 1.6 )xm. In contrast to the highly viscous case, the motional resistance for the 

highly elastic composite resonator illustrated in Rgure 3.9b is 16.2 ft's at this thickness 
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Figure 3.8. a. AT QCM resonance frequency variation as a function of viscoelastic 

polymer acoustic phase for the viscous case. 

b. AT QCM motional resistance variation as a function of viscoelastic 

polymer acoustic phase for the viscous case. Material parameters for 

polymer film; cl =1.0e7 Pascal, T|L=0.1 Pascal-sec. and p=1000 kg m"3. 
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Figure 3.9. a. AT QCM resonance frequency variation as a function of polymer 

acoustic phase for the elastic case. 

b. AT QCM motional resistance variation as a function of polymer acoustic 

phase for the elastic case. Material parameters for polymer film: cl = 1.0e7 

Pascal, TiL=0.001 Pascal-sec. and p=1000 kg m"3. 
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resulting in a loaded Q of 25,473. In both cases, the resonance frequency variations 

diverge rather quickly past a certain point and thus as a generalization the models track the 

resonance frequency variation of the admittance expression up to approximately 50 degrees 

of acoustic overlayer phase. A majority of this error is related to the Taylor series 

expansion on the Tan function of the complex A factor where only the first and third order 

coefficients are kept. Increased accuracy could result if higher order terms were kept 

however, the tractability of the resulting impedance parameter expressions would suffer. 

The tradeoff between simplicity of impedance parameter expressions and model accuracy 

depends on how many terms are kept in the Taylor series expansion of the Tan(kLL) 

function. However, for most sensing applications, polymer film thicknesses of less than 

1.6nm are used which applies to the region of operation of the BVD models. For thicker 

polymer films, the differential or Q - bandwidth calculations should be used to calculate the 

effective motional impedance parameters of the polymer-loaded resonator since for this case 

the parameters are highly non-linear to the polymer mechanical properties. 

Polymer Thickness Resonator Analysis 

In this section, the impedance parameters of a polymer film coated AT QCM are 

analyzed as the thickness of the film is varied. The standard elastic, dielectric and 

piezoelecuic constants for alpha quartz are used [54]. To achieve temperature stability, the 

rotated Y-cut AT resonator is typically used which requires rotating the alpha quartz 

constants 35.25 degrees about the Z axis using the left hand convention. The rotated 

constants for the thickness mode calculated out to be C66 = 29.0224*10^ N/m^, e26 = 

0.0949049 C/m^, and £22 = 39.8162*10'12 p/m resulting in a coupling constant of 

approximately ko^ = 0.00774 or 8.8%, consistent with those provided by Kosinski [55]. 

To include the loss effects in the quartz, an added phenomenological viscosity of 9.22e-3 

Ns/m^ was used. This constant accounts for all loss effects in the crystal and should not 
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be confused with the viscosity of the polymer film. The quartz viscosity value was 

calculated by fitting the measured admittance of a typical AT QCM used in lab which results 

in a series motional resistance of 7.34 Ohms and unloaded Q of 56089 at series resonance 

of 8.974261 MHz. The thickness of the resonator which includes the electrode 

metalization as well as the quartz piezoid used in this analysis was 184.58534 jim with an 

effective electrode radius of 3.175 mm. 

The computer modeling for this analysis consists of utilizing the pure mode admittance 

expression, Eq. (2.55), for which the equivalent BVD circuit is extracted by the Q-

bandwidth approach and the differential approach. These calculations are made 

simultaneously and compared to insure that no significant numerical calculation error 

exists. The FORTRAN program, QU_LEN5.F0R, used for this analysis is listed in 

appendix C for reference. This program calculates the impedance parameters for the three 

BVD circuit models as well as that for the admittance expression down to 0.001 Hz 

frequency precision. 

In this analysis, the thickness of the viscoelastic polymer is swept from 0 to 20 fim for 

which the impedance parameters are calculated at each thickness point. The two cases 

considered in this analysis will be that of a viscous or "lossy" polymer film and that of a 

"moderate" viscoelastic film. The lossy film is characterized by a shear elastic modulus of 

1.0* 10^ N/m2, viscosity of 0.1 Ns/m^, and a nominal density of 1000 kg/m^. The elastic 

modulus constant was chosen to coincide with values measured which will be addressed 

later. For polymer films, the shear elastic modulus can vary over three orders of magnitude 

from 10^ to 10^ N/m^ between the rubbery and glassy states [32]. Unfortunately, values 

of viscosity for polymer films are not characterized as well and can have large variations 

depending on how the film is prepared, whether it is stressed by application or spin 

coating, the duration and temperature of thermal bake to remove solvents, and general 

polymer structure. A more general figure of merit for this film would be the value of the 
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film loss tangent, (011l/Cl. When the loss tangent is much smaller than one, the material 

will be dominated by elastic behavior. As the loss tangent gets larger and approaches one, 

viscous damping effects begin to appear for which the polymer film is termed as being 

viscoelastic, having properties described by both elastic and viscous characteristics. For 

the "lossy" polymer film, Figure 3.10 illustrates the series resonance frequency shift and 

loss tangent as a function of the thickness of the viscoelastic film. The resonance 

frequency initially decreases as would be expected by increasing the acoustic cavity. 

However past a point of 3 ̂ im, there is a region where the resonance frequency increases 

with increasing thickness. The resonance frequency at 4 fim overshoots the unloaded 

resonant frequency and then decreases again with increasing thickness. At the point where 

the resonance frequency increases, the resistance as illustrated in Figure 3.11 reaches a 

maximum of around 8000 Ohms resulting in a Q of around 100. This resistance would be 

too large for oscillation to continue, however it could be measured using a network 

analyzer. The motional inductance and capacitance variation as a function of polymer 

thickness are illustrated in Figure 3.12. In the region where the frequency initially 

decreases, both the inductance and capacitance increase. At the thickness where the 

resonance frequency increases, the inductance increases and the capacitance decreases in a 

way which appears to be miixor images of each other. Figure 3.13 shows the part-per-

million deviations of the resonance frequency, motional inductance and motional 

capacitance as a function of polymer thickness for thicknesses up to 4 [im where the initial 

overshoot exists. Both the inductance and capacitance ppm deviations increase as the 

thickness initially increases after which point the divergence behavior exists. 

An alternative viewpoint in this analysis is to consider the polymer acoustic phase shift 

as the independent variable instead of the thickness. The polymer acoustic phase sMft is 

defined as RE[(oL (Pl/(Cl + Figure 3.14 illustrates the series resonance 
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Figure 3.10. Resonance frequency shift and loss tangent variation as a function of 

polymer thickness. 
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Figure 3.11. Motional resistance and Q as a function of polymer thickness. 
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Figure 3.12. Motional series inductance and capacitance as a function of polymer thickness. 
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Figure 3.13. PPM deviation as a function of polymer thickness. 
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Figure 3.14. Resonance frequency shift and motional resistance as a function of polymer 

acoustic phase illustrating dynamic response near odd multiples of 90*. 

frequency variation and motional resistance as a function of polymer acoustic phase. Note 

that at odd multiples of 90 degrees, the resonance frequency increases and the resistance 

reaches its maximum value. The key to understanding this dynamic response near 90 

degrees is to analyze the mechanical particle displacement across the thickness of the 

composite acoustic resonator. This calculation requires the mechanical displacement 

equations for the different layers, Eq. (2.43) and Eq. (2.44), and the solution of the 

constants of integration A, B, C and D. Figure 3.15 illustrates the particle displacement for 

phases of 14.6,29.1,72.5, and 102.2 degrees. The thickness of the composite resonator 

is the ordinate where the polymer thickness extension has been magnified 50 times for 

clarity. The abscissa is the normalized particle displacement. At 14.6 degrees of acoustic 

phase corresponding to a film thickness of 0.5 jun, the film displacement is fairly rigid and 

thus moves synchronously with the resonator surface. As the thickness is extended to 2.5 

^m, the acoustic phase reaches 72.5 degrees for which the upper surface of the film 
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Figure 3.15. Normalized mechanical particle displacement across the thickness of the 

composite resonator for acoustic phase's of 14.6', 29.1*, 72.5*, and 102.2*. 

exceeds that of the resonator surface and displacement overshoot occurs. The film particle 

displacement overshoot continues up to 90 degrees of phase at which "film resonance" 

occurs [32] characterized by the 180 degree phase reversal of the polymer film 

displacement resulting in a frequency higher than that of the unloaded resonator but 

severely damped due to the particle displacement phase lag. Film resonance is illustrated in 

the fourth figure which for a thickness of 3.5 (im, the acoustic phase is 102.2 degrees and 

the polymer film displacement overshoot is 180 degrees out of phase with the resonator 

surface. 

The second polymer film case to be analyzed in this study is termed that of a "moderate" 

viscoelastic film characterized by a shear elastic modulus of 1.0*10^ N/m^, viscosity of 

0.001 Ns/m2, and a nominal density of 1000 kg/m^. The polymer viscosity in this 

analysis is two orders of magnitude lower than the original which results in an initial loss 
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tangent of two orders less. The resonance frequency shift and loss tangent as a function of 

polymer thickness is illustrated for this case in Figure 3.16. The resonance frequency 

variation initially has the expected linear region of frequency decrease characteristic of the 

microbalance regime. However, in sharp contrast to the previous polymer film, the 

"moderate" film has a knee at around 2.5 jrni after which the resonance frequency is driven 

downward as the polymer film is increased. Film resonance does not occur for this case. 

The motional resistance and Q variation as a function of film thickness in Figure 3.17 

illustrates this case more clearly. The resistance does not reach a maximum value 

characteristic of "film resonance". There is a region of large resistance increase after which 

the resistance increases fairly linearly with increasing thickness. The motional inductance 

and capacitance variation for tWs case is given in Figure 3.18 which is also characterized by 

a linear region and then a region of rapid change. Figure 3.19 illustrates the ppm 

deviations of the resonance frequency, motional inductance and motional capacitance over 

linear and transition regions up to a thickness of 2.5 [un. Both the inductance and 
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Figure 3.16. Resonance frequency shift and loss tangent as a function of polymer 

thickness. 
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Figure 3.17. Motional series resistance and Q variation as a function of polymer thickness. 
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Figure 3.18. Motional series inductance and capacitance as a function of polymer thickness. 
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Figure 3.19. ppm variation as a function of polymer tWckness. 

capacitance initially increase as in the previous case after which their deviations diverge in 

the large frequency deviation region. 

The difference in the dynamic response of the two polymer cases can be understood 

more clearly in Figure 3.20 which is a graph of the polymer acoustic phase as a function of 

polymer thickness over the first 4 Jim. In the lossy case, the phase is linear with increasing 

thickness. However, for the case where the viscosity is much lower, the phase is linear up 

to 90 degrees after which the rate of accent sharply drops. Past a thickness of 6 nm, the 

polymer acoustic phase does overcome the 90 degrees barrier, however, in sharp contrast 

to the work of Martin and Frye [32], film resonance does not occur. The fundamental 

physical aspect is not necessarily the acoustic phase, but the degree to which the polymer 

film acoustically couples to the piezoelectric resonator. A means of qualitatively explaining 

this response is to calculate the acoustic wave reflection coefficient which is the ratio of the 

reflected to the incident stress wave at the piezoelecuic crystal - polymer film interface: 
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Figure 3.20. Polymer acoustic phase as a function of thickness for the two cases considered. 

r = ^2jal= 
rp  ̂
^0 Zl 

Zo,a 
+ 1 

(3.55) 

This analysis uses the transmission line analogy where the resonator is considered the 

source of the stress waves with characteristic impedance Zo,a and the load is the polymer 

film. The source resonator generates traveling stress waves which upon arrival at the film 

interface are reflected back or transmitted depending on the difference of the acoustic 

impedance's seen at this interface. At the upper air surface of the polymer film, traction 

free boundary conditions force the stress to zero, an analogous conditions to a short in an 

electrical transmission line model. The resulting input impedance of the load polymer film 

is given by: 

ZL=j Zo^tan(kLL) (3,56) 
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where Zo,L is the characteristic impedance of the polymer film. Hgure 3.21 is the graph of 

the acoustic reflection coefficient for the two cases. For the first case, the reflection 

coefficient is fairly large implying that the stress wave is not coupled heavily into the 

polymer film. On the other hand, the second case has a substantially lower reflection 

coefficient characteristic of strong stress wave coupling. The acoustic impedance's of the 

source resonator and load film arc close enough such that the layer acts as an "acoustical 

extension" which allows the strcss wave to couple strongly resulting in the steep decline in 

resonance frequency as the thickness is increased. The strong coupling is apparent in the 

mechanical displacement for the second case as illustrated in Figure 3.22. In the region of 

90 degrees acoustic phase shift, the particle displacement at the upper surface of the film 

exceeds that of the resonator surface and displacement overshoot occurs just as in the 

previous case. However, due to the fact that the resonator and film are strongly coupled, 

the displacement node begins to move up the resonator cavity from the center. For 

illustration purposes. Figure 3.22 shows the movement of the displacement node in the 
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Figure 3.21. Acoustic reflection coefficient as a function of polymer thickness for the 

two cases considered. 
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Figure 3.22. Normalized mechanical particle displacement across the thickness of the 

resonator as the polymer phase is increased but does not show the displacement overshoot 

in the polymer film. At the point of 90 degrees, the node exists at the resonator-polymer 

film interface. Increasing the thickness past this point, the phase exceeds 90 degrees and 

the node exists in the polymer film. Note that in this case, fundamental mode resonance 

exists since the composite resonator remains at one-half acoustic wavelength. 

In this analysis, the impedance parameters of a polymer coated AT QCM will be 

analyzed as the modulus of elasticity of the polymer film is varied. Two cases will be 

considered for which each will illustrate a very different response as was the case in the 

thickness analysis. The first polymer film will be characterized by a thickness of 4nm, 

nominal density of 1000 kg/m^, and a viscosity of 0.1 Ns/m^. The computer modeling for 

composite resonator for four polymer phase cases. 

Polymer Elasticity Resonator Analysis 
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this analysis utilizes the pure mode admittance expression, Eq. (2.55), for which the 

equivalent BVD circuit is extracted by the Q-bandwidth and differential approach. The 

algorithm for this calculation is similar to the one used in the thickness analysis except the 

elasticity is the independent variable and the thickness is held fixed. The elasticity is swept 

over three orders of magnitude from 10^ to 10^ N/m^, representing polymer film transition 

from the rubbery to glassy state. The glassy state represents the condition where the film is 

highly rigid while the rubbery state represents the condition where the film is very 

compliant. Note that tWs definition is relative to the frequency of operation of the acoustic 

wave device and the type of mode excited. For this case, the transition from the low loss 

rigid film to the compliant film is illustrated in Figure 3.23 which shows the resonance 

frequency shift and loss tangent as a function of elasticity. Note that the natural order in 

this case is from the region of high to low elasticity. The graph of the polymer acoustic 

phase as a function of elasticity illustrates this more clearly in Figure 3.24. The acoustic 

phase increases as the elasticity is increased to around the point where the loss tangent is 

unity. Similarly, the resonance frequency decreases as expected for declining elasticity to a 

point where film resonance occurs at which there is a sharp increase in frequency. In the 

vicinity of film resonance, the system is highly damped as illustrated in Figure 3.25 which 

shows the motional series resistance and Q variations. The motional series inductance and 

capacitance variation to polymer elasticity is illustrated in Figure 3.26 and 3.27. Note that 

in the region before film resonance occurs, the inductance increases while the capacitance 

decreases with the ppm deviation of the inductance being larger. This is an interesting 

result since classical theory [56] predicts that elasticity variations should only reflect 

changes in the motional capacitance. This may be the case for an uncoupled single mode 

resonator, however, for a coupled system consisting of a resonator and viscoelastic 

overlayer, this notion does not apply. 
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Figure 3.23. Resonance frequency shift and loss tangent as a function of polymer 

elasticity. 
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Figure 3.24. Polymer acoustic phase as a function of elasticity for 4 fim polymer film 

with density of 1000 kg/m^ and viscosity of 0.1 Ns/m^. 
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Figure 3.25. Motional series resistance and Q variation as a function of polymer elasticity. 
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Figure 3.26. Motional series inductance and capacitance as a function of polymer elasticity. 
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Figure 3.27. PPM deviation as a function of elasticity for polymer film characterized by 

a thickness of 4.0nm, viscosity of 0.1 Ns/m^, and density of 1000 kg/m^. 

The second polymer film presented in this analysis is characterized by a thickness of 2 

|im, a nominal mass density of 1000 kg/m^, and a lower viscosity of 0.001 Ns/m^. These 

parameters were chosen to illustrate the case where film resonance does not occur, even for 

rubbery films that exhibit a acoustic phase greater than 90*. The resonance frequency shift 

and loss tangent for this second elasticity study is illustrated in Figure 3.28. Note that no 

film resonance occurs with decreasing elasticity as the resonance frequency is driven down 

by the dominant elastic coupling of the film. The polymer acoustic phase in Figure 3.29 

supports this assertion since the phase ascent with decreasing elasticity slows down in the 

region of 90*. In this region where the acoustic coupling is large, the composite system is 

heavily damped as shown by the rapid increase in motional resistance and subsequent 

decrease in Q in Figure 3.30. Note that the motional capacitance and inductance remain 

fairly linear until the region where the acoustic coupling increases as illustrated in Figures 

3.31 and 3.32. The ppm deviation of the inductance is also greater than that of the 
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Figure 3.28. Resonance frequency and loss tangent variation as a function of polymer 

elasticity for film characterized by 1000 kg/m^ density, 0.001 Ns/m^ 
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Figure 3.29. Polymer acoustic phase as a function of polymer elasticity. 
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Figure 3.30. Motional series resistance and Q as a function of polymer elasticity. 

10000 100 

-Cs (fF) 
1000 

8 100 
o 
Z3 t3 B 

Ls(mH) 
10 

0.1 
10® 10' 10® 10' 

Elasticity (N/m^) 

Figure 3.31. Motional series inductance and capacitance as a function of elasticity. 
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Figure 3.32. PPM deviation as a function of elasticity. 

capacitance which supports the findings of the first polymer case in this study. 

In order to understand the material differences in the two cases, one possible indication is 

the large difference in the loss tangent. When the loss tangent is small, film resonance does 

not appear as likely as was the case in the thickness variation study. If the acoustic 

impedance of the film is similar to the resonator in the vicinity of 90*. pronounced acoustic 

coupling results as illustrated in the acoustic reflection coefficient graph in Figure 3.33. The 

first polymer film does show a dip in the reflection coefficient near resonance, however not 

large enough to provide the strong coupling necessary to inhibit film resonance. 

Mechanically, the difference in the polymer film resonance and film coupling cases are 

clearly illustrated in Figures 3.34 and 3.35. For the case where coupling is low and the 

phase exceeds 90*, particle displacement overshoot and 180* phase reversal is prominent. 

However, when strong coupling exists in the vicinity of 90*, the particle displacement node 

in the resonator is driven toward and into the polymer film. Figure 3.34 is the pictorial of 

this second case which only shows the node movement in resonator and polymer interface. 
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Figure 3.33. Acoustic reflection coefficient magnitude as a funcdon of the polymer film 

elasticity. Low coupling is present for the film characterized by a til = 0.1 
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Figure 3,34. Mechanical particle displacement across the thickness of the composite 

resonator illustrating film resonance. The thickness of the polymer film is 

magnified 30 times for visual clarity. 
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Figure 3.35. Mechanical particle displacement across the resonator thickness illustrating 

node movement characteristic of strong acoustic coupling. 

Polymer Viscosity Resonator Analysis 

The previous two analyses presented cases where polymer film resonance and strong 

acoustic coupling were induced by varying the polymer thickness or elasticity. It was 

found that the influence of polymer viscosity determined whether film resonance or strong 

acoustic coupling occurred. Both cases resulted in highly damped systems even though 

their induced mechanical operation was quite different. In this analysis, the goal is not to 

explore the film resonance or coupling conditions, but to illustrate how changing viscosity 

affects the motional impedance parameters of the coupled system. The polymer film used 

in this analysis is characterized by an elasticity of 1.0*10^ N/m^, thickness of 2.0 |im, and 

a nominal density of 1000 kg/m^. The viscosity is swept over 5 orders of magnitude from 

10"^ to 10^ Ns/m2. The resonance frequency shift and loss tangent are plotted on a log-

log graph on Figure 3.36 to magnify the frequency change. For most polymer film sensing 
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applications, a viscosity in the 10*4 to 10*3 Ns/m^ range is desirable since the damping 

effects are minimized. However, note that even at low viscosity values, significant 

frequency changes can occur with induced viscosity variations. For instance, a change in 

viscosity from 1*10*3 to 10*10"3 Ns/m^ can result in over 400 Hz frequency deviation. 

In the region where the loss tangent approaches unity, the resonant frequency shift levels 

off. The system is now characterized by a higher loss modulus than the storage modulus. 

In the region where the loss tangent is small, the resistance as illustrated in Figure 3.37 

increases as would be expected. However, near unity loss tangent, the resistance reaches a 

peak maximum and begins to descend as the viscosity is increased further. The rolling off 

of the frequency shift and decrease in resistance at higher loss tangents appear to be an 

elastic "stiffening" effect. The complex modulus is now dominated by the loss modulus. 

The frequency is high enough that with a large viscosity, the viscous film molecules cannot 

react or flow in the time period of the elastic wave resulting in the appearance of elastic 
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Figure 3.36. Resonance frequency shift and loss tangent variation as a function of 

polymer film viscosity. Polymer film characterized by: Cl = l.Oe? N/m^, 

p = 1000 kg/m^, and thickness = 2.0 fim. 
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Figure 3.37. Motional series resistance and Q as a function of polymer film viscosity. 
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Figure 3.38. Motional series inductance and capacitance as a function of polymer film 

viscosity. 
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Figure 3.39. PPM deviation as a function of polymer film viscosity. 

film properties. The motional inductance and capacitance as shown in Figure 3.38 and 

3.39 stay fairly constant over the range where the viscosity and frequency shift is small. 

However, in the transition region where the film is shifting from elastic to viscous 

stiffening, the inductance decreases while the capacitance increases. Note that this 

response is similar to the elastic stiffening case where the storage modulus is increasing in a 

low loss tangent film dominated by elastic behavior as discussed previously. The 

dominance of the loss modulus is most clearly illustrated in the polymer acoustic phase 

illustration as suggested in Figure 3.40 where the acoustic phase decreases as the viscosity 

is increased in the transition and high loss tangent regions. Even though the damping is 

fairly large in the system, the viscous polymer mechanical particle displacement moves 

synchronously with resonator. In the lower viscosity region where the polymer phase 

remains fairly constant, increasing viscosity results in damping of the particle displacement 

maximum as illusU^ated in Figure 3.41. 
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Figure 3.40. Polymer acoustic phase as a function of polymer viscosity. 
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Figure 3.41 Mechanical particle displacement across the thickness of the composite 
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polymer viscosity. Polymer thickness magnified 60 tunes for clarity. 
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Polymer Mass Density Resonator Analysis 

The use of acoustic wave resonators as mass sensors was first demonstrated by 

Sauerbrey [7]. This analysis resulted in the classic Sauerbrey equation which indicated that 

for small mass changes, the decrease in series resonance frequency is linearly related to the 

deposited mass on the resonator electrode surface. The underlying assumption in this 

analysis is based on the argument that if the deposited film is located entirely within the 

antinode region of the mechanical particle displacement of the resonator, the elastic 

properties of the film cannot influence the resonance frequency since no displacement 

deformation takes place. However, this analysis was found to be valid for 2% frequency 

shifts from the unloaded resonance frequency due to mass loading [13]. The inclusion of 

elastic wave propagation and energy storage in the overlying film is included in the 

extended analysis's of Miller and Bolef [57] and Lu and Lewis [10] which traces the 

resonance frequency shift due to mass changes of a purely elastic overlayer. However, 

damping effects are not considered due to the lack of the film viscosity term. 

In this analysis, the full electrical admittance theory is applied which includes mass and 

visco-elastic effects of the polymer film. A typical application of a piezoelectric resonator 

as a mass sensor involves the placement of a chemically selective polymer film or 

monolayer on one of the electrode surfaces. The overlayer absorbs gas phase analytes 

from its measuring environment, resulting in a change in resonance frequency as well as 

changes in the motional impedance parameters. If the analysis is limited to mass changes 

only, the relative dynamic range in operating mass density is fairly small. In fact, a 

majority of the typical polymer films that would be used for sensing applications range 

approximately from 800 to 1200 kg/m^. In this analysis, the mass density is swept from 

200 to 2000 kg/m^ to demonstrate any dynamic effects that could possibly take place by 

most any polymer film. The polymer film in this analysis is characterized by a modulus of 

elasticity of 1*10^ N/m^, viscosity of 0.001 Ns/m^, and thickness of 2.0 ^m. The 
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resonant frequency shift and polymer acoustic phase for this polymer film is shown in 

Figure 3.42. In this range of frequency deviation, the loss tangent varies from 0.056 to 

0.052. The decrease in resonance frequency shift is fairly linear in the low and middle 

mass density region up to around 1200 kg/m^ after which the negative gradient becomes 

larger. The larger change in frequency shift in the higher density region is probably 

attributed to the polymer acoustic phase increasing towards 90*. As in the case of the 

thickness and elasticity analysis, the polymer film will be coupled strongly or go through 

resonance in the region where the 90* polymer acoustic phase is reached. However, since 

the mass deviations for any practical microbalance application is fairly small, the possibility 

of inducing film resonance by mass sorption remains fairly slim. If large mass changes are 

induced, a more likely scenario would be the dominance of the thickness variation of the 

polymer film and not the mass density change. Note that if a polymer film could be used in 

the high mass density region, the mass sensitivity could be enhanced since the negative 

gradient is larger resulting in larger frequency shifts. Unfortunately, the high mass density 

region results in severe damping of the composite resonator as illustrated by the motional 

series resistance and Q variations of Figure 3.43. The increase in damping is relative to the 

film's thickness and visco-elastic properties, however regardless of the film's 

characteristics, the region where the polymer acoustic phase approaches 90* is always 

characterized by a highly damped system due to the mechanical particle displacement 

overshoot. Thus, higher mass sensitivity in the higher acoustic phase region will be 

accompanied by a corresponding increase in elastic wave damping for all cases. 

Further information on mass density variations can be gained by evaluating the motional 

inductance and capacitance variations as illustrated in Figure 3.44 and Figure 3.45. Unlike 

thickness variations where both the inductance and capacitance increase as thickness 

increases for low to mid acoustic phase values, mass density changes result in opposite 
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Figure 3.42. Series resonance frequency shift and polymer acoustic phase as a function 

of polymer mass density for a mm film characterized by an elasticity 

of 1.0*10^ N/m^ and viscosity of 0.001 Ns/m^. 
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Figure 3.43. Motional resistance and Q variation as a function of polymer mass density. 
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Figure 3.44. Motional series inductance and motional series capacitance as a function of 

polymer mass density. 
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Figure 3.45. PPM deviations as a function of polymer mass density. 
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effects in the inductance and capacitance. As the mass density increases, the motional 

inductance increases while the motional capacitance decreases. In fact, over the nominal 

mass density range of 800 to 1200 kg/m^, the motional inductance increases at a rate which 

is almost twice that of the motional capacitance as illustrated in the ppm variation of Figure 

3.45. However, unlike classical theory for an uncoupled single moded resonator, mass 

changes are not exclusively reflected by motional inductance changes but also to motional 

capacitance changes, especially at higher polymer acoustic phase values. 
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CHAPTER 4. PHOTONICALLY SENSITIVE POLYMER FILM CHARACTERIZATION 

The majority of piezoelectric resonator sensor applications utilize the mass sorption 

properties of a sensing polymer film or monolayer. The perturbation of the mass density of 

the sensing film is monitored by the electro-mechanical resonance of the piezoelectric 

resonator which can be measured by impedance analysis or through the application of the 

resonator as the feedback firequency - controlling element in an oscillator circuit. From a 

chemistry point of view, the advancement in technology in this area is driven by the need to 

engineer polymer films or monolayers which are hydrophilically specific to the chemical 

analyte of interest. However, consider the possibilities of engineering a sensing film 

whose absorbence properties are not specific to any particular gas phase analyte but will 

only react with specific analytes in such a way that elasticity changes are induced. Mass 

penurbations will still be present due to the absorbence of the analyte molecule and will be 

a source of interference. However, as illustrated in the previous analysis, not only is the 

dynamic range for induced elastic changes substantially larger Uian mass changes but its 

resonance firequency variations should dominate any induced sensing response. Presently, 

this type of sensing film in nothing more than a novel concept. However elasticity 

variations can be induced in photosensitive polymer films used as negative resists in 

microlithographic fabrication [58]. The elasticity variations in the polj-mer films are incited 

by cross-linking of the polymer chains. Cross-linking of polymer chains should act to 

"stiffen" the film by restricting the ftee movement of the chain with respect to its neighbors, 

resulting in an increase in the elasticity. In negative photoresists, the solubility of the 

polymer film to the developer is reduced by inducing the formation of cross-links by 

ultraviolet radiation. Thus, one possible application would be the relationship between the 

solubility of the polymer film to its effective elasticity variation. 
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In this analysis, the photo-polymerization of a polymer film is going to be investigated 

using an AT cut quartz resonator to monitor the induced structural changes caused by 

ultraviolet radiation. The resonator geometry consists of a thin AT cut quartz plate upon 

which Cr/Au circles of radius 3.175mm are patterned to form the opposing electrodes. A 

typical QCM used in this study is characterized by a series resonance frequency of 8.972 

MHz with a series resistance of 8 ohms resulting in an unloaded Q of approximately 

60,000. The utilization of the QCM in this study provides a unique solution to the 

viscoelastic properties of the deposited polymer film if the thickness and mass density can 

be calculated independently. Thus, scattering parameter measurements made via a network 

analyzer before and after coating offers one means to characterize the viscoelastic properties 

of the deposited polymer film at the frequency of operation. 

HR 100 Photo-polymerization Analysis 

In this analysis, a photolithographic polymer film previously used on shear horizontal 

(SH) acoustic plate mode (APM) devices to monitor its induced cross-linking is 

investigated [59]. In SH-APM devices, the measurement consists of monitoring the 

velocity and attenuation which can be related to only the changes in the elastic storage and 

loss modulus of the thin polymer film under dynamic measurement conditions. Like the 

SH-APM, the AT-QCM used in this analysis provides unique determination of any 

variation of the visco-elastic properties of the polymer film. However, unlike the SH-

APM, the QCM allows exact calculation of the bulk visco-elastic properties of the polymer 

film. Substantially more information is available by using piezoelectric resonators than 

interdigited plate mode devices by analyzing the motional impedance parameter variations 

as was previously demonstrated. 
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HR 100 photocross-linking reaction 

The photo-sensitive polymer used in this analysis is HR 100, a commercial negative 

photoresist supplied by OCG Microelectronic Materials [60]. HR 100 is based on synthetic 

cis 1,4 polyisoprene whose unmodified structure is characterized by long, flexible coiled 

chains with weak intermolecular forces. In order to make the polymer less flexible and 

raise its softening point well above room temperature, the polyisoprene is partially cyclized 

which is a process that reduces the double bond content by forming cyclic structures [61]. 

The original polyisoprene is converted to chains of mono and fused 6 membered rings 

distributed randomly along the polymer chain and interrupted by sequences of non-cyclized 

isoprene monomers [60]. Since the cyclized polyisoprene does not absorb UV radiation, 

photoactivity is promoted by the incorporation of 4% by weight of the photoinitiator, 2,6-

bis-(p-azidonbenzylidene)-4-methylcyclohexanone (ABC), which absorbs strongly near 

360 nm. The crosslinking reaction of the HR 100 is shown schematically on Figure 4.1 

[59,60] where the partially cyclized polyisoprene units are collectively represented by RH. 

After the absorbence of UV radiation, two nitrogen molecules are released and the 

photoinitiator dissociates into a highly reactive nitrene intermediate. A crosslink is formed 

when the allylic hydrogen atoms in the partially cyclized polyisoprene reacts with the 

nitrenes and forms a bond. If this process is repeated throughout the photo exposed 

volume, cross linking of the partially cyclized polyisoprene chains should result in a single, 

continuous molecule contingent on the chains being lined up properly to facilitate the cross-

linking bond. 

Polymer film preparation 

Prior to polymer film preparation, the gold electrodes of the QCM's were cleaned to 

remove any residual materials which would interfere with or affect the surface adhesion. 

This was accomplished by placing the resonators in a solution of 1:3 H2O2 (307c) -
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Figure 4.1. HR 100 Photo-induced cross-linking reaction. 

H2SO4 (concd) for 30 seconds to a minute. The resonators were then rinsed thoroughly 

with deionized H2O, methanol and acetone. The HR 100 negative photoresist films were 

prepared by spin-coating one side of the QCM in a microlithographic clean room. The 

films were soft baked for 30 minutes at 85*C in air to drive off the solvents and release any 

induced film stress caused by spin coating. Similar HR 100 polymer samples were 

identically prepared on quartz plates at the same time. The thicknesses of the HR 100 
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polymer films were determined by using step height prophilometry measurements on the 

quartz plates using a Sloan Dektak DA surface profiler. The HR-100 coated QCM's were 

then mounted and sealed in a canister which contained a quartz window for UV irradiation. 

During the testing cycle, the polymer coated QCM was purged with dry nitrogen via gas 

inlet and outlet tubes on the canister. 

Me^tsurement procedure 

Prior to polymer film application, one-port scattering parameters (S parameters) of the 

uncoated QCM's were measured using a Hewlett-Packard 8753C network analyzer. For 

automated data acquisition and analysis, instrument control was provided by Hewlett-

Packard 85165A resonator measurement software running on TransEra HT Basic installed 

in a 33 MHz 486 personal computer. The software transforms the measured S parameters 

into electrical admittance from which the various resonance frequencies and motional 

impedance parameters can be calculated. Once the measurements of the uncoated QCM's 

were completed, the coated devices were prepared and measured again. Using the change 

in the measured electrical admittance from the coated and uncoated QCM, unique 

determination of the polymer film shear elasticity modulus and viscosity can be calculated 

using the FORTRAN program QU_IMP4.F0R if the mass density and thickness of the 

polymer film can be measured independently. This provides the starting point of the 

fundamental mechanical properties of the polymer film which will be perturbed during 

measurement. 

Cross-linking of the HR 100 polymer film is induced by focusing monochromatic light 

through the quartz window of the sealed QCM canister. During irradiation, the canister is 

purged with 100 seem nitrogen to drive off any ambient moisture. The UV light source 

used to irradiate the polymer coated QCM's consists of the 450 watt Xenon arc lamp and 

monochromator of the SPEX Fluorometer system. For a slit width of 2.5mm, the spectral 
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bandwidth of the SPEX 1681 monochromator is 9.25 nm resulting in an approximate 

power density of 6 mW/cm^ at a wavelength of 380 nm. 

HR 100 UV-Visible Absorption Analysis 

In parallel with the coated QCM analysis, UV - visible absorption spectra were 

measured on identically prepared quartz plates at various time intervals under the same 

conditions as the QCM would encounter. The absorbence spectra is defined as the logio of 

the ratio of the transmitted radiant power to the incident radiant power at a specific 

wavelength. The motivation for performing this analysis is twofold. The initial UV-visible 

absorption spectrum measurement of the unexposed HR 100 polymer film determines 

where the wavelength of the UV radiation light source is to be set by the monochromator 

for the QCM measurements. The absorbence spectra taken at various time intervals is 

illustrated in Figure 4.2. which shows an initial absorbence peak at 354 nm. This 

measured value corresponds well to the published absorbence spectra as supplied by OCG 

1 -
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•fi o to 
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Figure 4.2. UV - visible absorption spectrum of HR-100 film taken on quartz slide 

illustrating the decrease in peak absorbence to 380nm exposure time. 
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[60]. For future absorbence and QCM measurements in the presence of UV radiation, the 

monochromator wavelength was set at 380 nm in an effort to slow down the reaction rate 

of the polymer crosslinking. 

Furthermore, besides the wavelength determination of the UV light source, the chemical 

concentration and reaction rate of the light absorbing species in the polymer film can be 

calculated using the Beer-Lambert law [62]: 

A  =  E b c  ( 4 . 1 )  

where the absorbence. A, is dimensionless and the concentration of the absorbing species, 

c, has units of moles per liter (M). The optical pathlength, b, is usually expressed in 

centimeters and the molar absorptivity, e, has units of M"1 cm'^. The molar absorptivity is 

the characteristic of the substance that tells how much light is absorbed at a particular 

wavelength [62]. In a typical absorption measurement, the optical pathlength and molar 

absorptivity are constants and the absorbence is thus directly proportional to the 

concentration of the light-absorbing species. 

In HR 100, the photo-induced crosslinking occurs by the light absorption of the ABC 

photoinitiator which dissociates, either photolytically or thermally, into the highly reactive 

nitrene intermediates that form a cross link between the partially cyclized polyisoprene 

chains. Thus, the drop in peak absorbence near 355 run indicates a change in the chemical 

concentration of the ABC photoinitiator. Figure 4.3 graphically illustrates the drop in the 

peak absorbence of the polymer film. The left axis is the peak absorbence while the right 

axis shows the percent concentration of the ABC photoinitiator specie which is unreacted. 

Note that in the first few minutes of exposure to UV light at 380 nm, absorbence decreases 

very rapidly followed by a much slower absorbence decrease. At 50 minutes exposure 

time, only 52 percent of the light absorbing photoinitiator species has reacted. The change 
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Figure 4.3. Peak absorbence drop as a function of exposure time to 380 nm light. 

in the absorbence slope as a function of time is indicative of two distinct reaction rates 

which can be found by graphing the natural log of the concentration to the initial 

concentration as a function of exposure time. When this is done, two linear traces appear 

with slopes of -5.43 and -0.055 (1/minute), characteristic of a two rate constant chemical 

reaction. The complete curve fit is also illustrated on Figure 4.3 which shows excellent 

agreement with the actual measure absorbence values. 

It is not surprising that upon initial exposure to UV radiation, the reaction rate occurs 

rather rapidly. HR 100 is a commercial negative photoresist which is developed for short 

exposure times necessary for microelectronic photolithographic fabrication. However, the 

occurrence of a very distinct slower reaction rate after a few minutes of exposure time 

requires further explanation. In order for a photo-induced cross-link to occur, two 

processes have to occur 1) the ABC photoinitiator must absorb the UV photon upon which 

nitrogen is released resulting in the highly reactive nitrene intermediates; and 2) the 

physical proximity of reaction sites of the partially cyclized polyisoprene chains must be 
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present upon which the cross-linking can occur. Initially, there is a large amount of 

reactive hydrogen atoms (allylic hydrogen atoms) in the polyisoprene polymer chains 

which can move fairly unrestricted to form cross-link bonds. However, the initial 

formation of the cross-link bonds binds up the polymer molecule and restricts the physical 

movement of the rubber chains, thus inhibiting further cross-link development resulting is a 

slower reaction rate as observed in the UV-visible absorption measurements. Tlus 

postulation is further supported by an optical filtering effect as noted by OCO [60] which 

states that for thick films, excessive absorption of light in the upper reaches of the resist 

film prevents cross-linking at the resist-substrate interface. 

HR 100 Coated QCM Analysis 

The goal of this research effort was to study the frequency and electrical impedance 

response of an AT QCM by optically inducing visco-elastic changes in a polymer film 

applied to one of its electrodes. In order to enhance this effect, thicker poiymer films are 

highly advantageous. For the photo-sensitive polymer being considered in this analysis, 

the recommended thickness for photolithographic applications is around I fim which is 

achieved by spin coating at a speed of 3000 rpm for 30 seconds. Thus, for the application 

of thicker films, the spin coating speed must be reduced and multiple coatings applied to 

achieve at a desired thickness of 2.5 to 3.5 Jim. A drawback in using a spinner to apply the 

polymer film is that the quality and mechanical characteristics (i.e. calculated elasticity and 

viscosity from a known thickness and mass density) tend to vary for thicker films prepared 

in an identical manner. In this analysis, two polymer film cases will be considered which 

clearly illustrate the differences in the visco-elastic properties of the polymer film and their 

affect on monitoring the induced structural changes of the photo-sensitive polymer film. 

A 2.547 ^m film is considered which is prepared by coating the top electrode of the 

QCM at a speed of 1000 rpm for 40 seconds and soft baked at 85* C for 30 minutes to 
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ensure all the solvent is removed. The initial calculated shear elasticity and viscosity of this 

film calculated out to be 1.6e7 Pa and 3.5e-3 Pa-sec, respectively, resulting in an acoustic 

phase of 60*. A thicker polymer film of 3.448 ^im can be achieved by performing a two 

spin process. Initially, the polymer film is spun at 2000 rpm for 30 seconds and baked for 

30 minutes at 90*C. The second application is performed at 1500 rpm for 30 seconds and 

post baked again at 90*C for 30 minutes to insure all the solvent is removed. The initial 

calculated shear elasticity and viscosity of this second film calculated out be 6.0e7 Pa and 

l.le-2 Pa-sec, respectively, resulting in a polymer acoustic phase of 41*. Note that the 

thicker film has a smaller acoustic phase due to the larger elastic storage modulus. 

OCM measurement results: Case 1 

The first polymer film which will be analyzed is the 3.448 |Jm HR 100 film. Shown in 

Figures 4.4 and 4.5 are the measured series resonance frequency variation and series 

resistance as a function of exposure time to 380 nm UV. Included in each plot is a curve fit 

illustrating a single reaction rate constant. The resonance frequency variation can be 
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Figure 4.4. HR 100 coated QCM series resonance frequency variation as a function 

of exposure time to 380 nm light Nominal thickness = 3.448 |i.m. 
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Figure 4.5. 

described by a single reaction rate of -5.431/min, in agreement with the initial fast response 

of the UV-visible absorption constant but lacking the slower reaction rate. TTie series 

resistance first order time constant was calculated out to be - 2.43/min, a reaction rate 

slightly slower than the resonant frequency however consistent with the exclusion of the 

slower reaction rate of the UV-visible absorption calculations. 

Areal mass density variation The contribution to the resonance frequency shift and 

series resistance due to the change Li area! mass density will first be considered. The loss 

of two N2 molecules for each of the 4% by weight photoinitiator compounds in the 3.448 

|im film of mass density 850 kg/m^ can be calculated out to be A(pt) = -17.584*lO'^ 

kg/m2. The loss of the N2 molecules in the polymer film can lead to two possible material 

deviations, one being the conservation of mass density by contraction of the film thickness 

as previously suggested [59]. For this case, the conservation of mass density implies that 

A(pt) = p At, resulting in a decrease in film thickness of 20.687 nm. Applying the mass 

o (measured) 
R, reaction rate curve 

R =0.798 '+25.152 

-5 0 5 10 15 20 25 
exposure time (min.) 

HR 100 coated QCM series resistance as a function of exposure time 

to 380 nm light Nominal thickness = 3.448 nm. 



www.manaraa.com

100 

density, viscosity, and shear elastic constants, the variation of the series resonance 

frequency and series resistance can be calculated as a function of film thickness as shown 

in Figure 4.6. For the initial thickness of 3.448 ^im, the resonant frequency - thickness 

slope is in the linear region, characteristic of acoustic cavity extension and thus fairly 

invariant to viscoelastic changes in the polymer film. The changes in resonance frequency 

and series resistance can be determined by using the calculated thickness slopes for each 

parameter 

Af = ^At = -29026.3 (Hz/^m) • -20.687 (nm) = 600 Hz 
at 

Ar = ^ At = 15.76 (Q/Hm) • -20.687 (nm) = 0.326 (4.2) 
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Series resonance frequency variation and series resistance as a function of 

polymer film thickness or acoustic phase. Nominal thickness for this film 

is 3.448 fim which corresponds to 41* polymer acoustic phase. 
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Equation 4.2 is the expected resonance frequency and resistance change if all 4% 

photoinitiator dissociates and lose two N2 molecules. However, the UV absorption 

measurements made under the same conditions indicate that for an exposure time of 25 

minutes, 56% of the absorbing photoinitiator specie remains unreacted. The corrected 

resonance frequency variation and series resistance change for this case is 264 Hz and 

0.143 Q, respectively. A second possible material modification is the decrease in mass 

density due to the loss of the N2 molecules while the rigid film remains fixed. Figure 4.7 

is the theoretically calculated resonance frequency shift and series resistance as a function 

of mass density for this polymer of constant thickness. Conservation of polymer thickness 

implies that A(pt) = t Ap which results in a mass density change of - 5.1 kg/m^. The 

expected amount of frequency shift and resistance change if 44% of the photoinitiator 

specie reacts is Af = 210 Hz and Ar = 0.093 Si. Note that for both cases, the majority of 

the measured frequency shift can be attributed to the change in areal mass density. 
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Figure 4.7. Series resonance frequency variation and series resistance variation as a 

function of polymer mass density. 



www.manaraa.com

102 

Elasticity variation The measured resonance frequency shift for this polymer film is 

dominated by thickness/mass changes incurred by the release of the N2 molecules and not 

by the cross-linking of the polymer chains which would result in an expected elasticity 

change. Note that in Figure 4.6, at a thickness of 3.448 |im, any changes in the film 

thickness result in a linear change in resonance frequency. This indicates that the operation 

of the composite resonator is fairly invariant to the elastic parameters of the film. The film 

thickness acts as an acousdc extension which implies that very little mechanical stress is 

coupled into the film. Figure 4,8 clearly illustrates this effect which shows the theoretically 

calculated series resonance frequency shift and series resistance as a function of polymer 

elasticity. For this particular film characterized by an initial elasticity of 6.0c7 Pa., the 

firequcncy variance to elasticity calculates out to be 0.25e-3 HzTPa. Only at lower values of 

elasticity would the resonator become sensitive to changes in elastic properties of the film. 
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Figure 4.8. Series resonance frequency variation and series resistance as a function of 

polymer elasticity or acoustic phase. For a calculated elasticity of 6.0e7 Pa, 

the acoustic phase is 41.6*. 
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Viscosity variation For this particular polymer film characterized by a nominal 

acoustic phase of 40', the mechanical stress variation in the overlayer is not large enough 

for the composite resonator's series resonance frequency to be sensitive to the elasticity 

changes. However, if one considers the amount of series resistance lost due to the mass 

changes, a resistance decrease of 0.143 accounts for only 18% of the measured 

resistance variation. In low acoustic phase cases which are insensitive to elasticity 

perturbations, series resistance variations are directly proportional to viscosity changes. 

The theoretically calculated series resistance and series resonance frequency variation as a 

function of viscosity for this film is graphically illustrated in Figure 4.9. Using the 

resistance and frequency sensitivity to viscosity changes, the resistance and resonance 

frequency variation can be calculated as shown in Eq. (4.3). Note that the change in 

frequency due to viscosity changes is negligible. For the nominal viscosity of 1.1 e-2 Pa-

sec, the calculated change represents a 5% reduction. Even though the percentage change 

is not very large, this viscosity variation is significant. 
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Figure 4.9. Series resonance frequency variation and series resistance as a function of 

polymer viscosity. Nominal viscosity for film considered is 1.1 e-2 Pa-sec. 
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ATI = 4^ = - 0.657 (Q.) / 1292.3 (r2/Pa-sec) = - 0.508e-3 (Pa-sec) 
or 

Af = -All = 386.42 (Hz/Pa-sec) • - 0.508e-3 (Pa-sec) = - 0.239 (Hz). (4.3) 
on 

OCM measurement results: Case 2 

TTie second polymer film considered in this analysis is characterized by a measured 

thickness of 2.55 |im, nominal mass density of 850 kg/m^, and a calculated elasticity and 

viscosity of 1.6e7 Pa. and 3.5e-3 Pa-sec., respectively. Shown in Figures 4.10 and 4.11 

are the measured series resonance frequency variation and series resistance as a function of 

exposure time to 380 nm UV. Note that for a thinner polymer film than what was 

previously considered, the measured frequency and resistance changes are substantially 

larger. The calculated reaction rates and curve fit correlates very well with the reaction rates 

calculated in the UV-visible absorption measurements. 
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Figure 4.10. HR 100 coated QCM series resonance frequency variation as a function 

of exposure time to 380 nm light. Nominal thickness = 2.547 nm. 
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Figure 4.11. HR 100 coated QCM series resistance as a function of exposure time 

to 380 nm light. Nominal thickness = 2.547 jtm. 

Area] mass density variation For a thickness of 2.55 flm, the change in the surface 

mass density due to the photoinitiator dissociation of N2 results in A(p t) = -12.9897e-6 

kg/m^. If the case is considered where the mass density is conserved by the contraction of 

the polymer film, then A(p t) = p A t resulting in a change of thickness of 15.28 nm. 

Applying the mass density and visco-elastic constants, the theoretically calculated change in 

the series resonance frequency and series resistance can be calculated as illustrated in 

Figure 4.12. Using the UV-visible absorbence results which indicate that at 60 minutes of 

exposure time 53% of the photoinitiator species reacts, the expected frequency and 

resistance change for this polymer film can be approximately calculated: 

Af = ^ At = - 43336.2 (Hzy^m) • - 15.282 (nm) -0.53 = 351 Hz 
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Ar = — At = 103.6 (f2/nm) • - 15.282 (nm) • 0.53= 0.839 Q.. (4.3) 

The transition from the linear-thickness region to the region where the resonance 

frequency-thickness slope increases rapidly due to stress coupling in the overlying film 

occurs near the nominal thickness of 2.55 [im. For thicker films, this slope is greater but 

the series resistance also increases at a rapid rate, resulting in a highly damped composite 

resonator with very little change in thickness. For a change in thickness from 2.55 to 3.5 

nm, the series resistance changes from 56 to 926 £i corresponding to a decrease in Q from 

7954 to 526. If the thickness is held fixed and the mass density is allowed to vary in 

accordance with the change in N2 mass, the mass density decreases by 5.1 kg/m^. Figure 

4.13 shows the series resonance frequency variation and series resistance as a function of 

changing mass density for a fixed thickness of 2.55 |im. The expected frequency and 

resistance change for decreasing mass density can be calculated from the theoretical slopes 

of Figure 4.13: 

A f  =  ̂ A p = -  1 2 6 . 4 1  ( H z / k g  m - 3 ) - - 5 . 1  ( k g  m - 3 )  0 . 5 3  =  3 4 1  H z  
dp 

Ar = 1^- Ap = -0.2033 (£2/kg m-3). - 5.1 (kg m-3) • 0.53= 0.549 £2. (4.4) 
dp 

The change in resonance frequency and resistance are slightly less than that for the 

thickness variation case, however, both are well within measurement accuracy. In a 

previous study [59], the assertion was made that a glassy polymer (below Tg) contracts 

upon loss of species resulting in a conservation of mass density. Albeit physically 

understandable, experimentally verification of this assumption would be very difficult. 
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Figure 4.12. Series resonance frequency variation and series resistance as a function of 

polymer film thickness or acoustic phase. Nominal thickness for this film 

is 2.547 urn which corresponds to 60* polymer acoustic phase. 
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Figure 4.13. Series resonance ftequency variation and series resistance variation as a 

function of polymer mass density. 
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Based on the chenustry of the photo-induced cross-linking, the fact that mass is lost by the 

liberation of the N2 molecules is known and accepted. Thus, the change in mass density 

will be the proposed areal mass density deviation which will used in the subsequent 

analysis. 

Elasticity variation The amount of fi^quency deviation wWch can be accounted for by 

photo-induced cross-linking elasticity changes is 157 Hz. The theoretically calculated 

resonance frequency variation and series resistance change as a function of elasticity for 

this polymer film is shown on Figure 4.14. At a nominal elasticity of 1.6e7 Pascals, the 

resonance frequency variation is highly sensitive to any elasticity changes, the sensitivity 

decreasing as the elasticity increases. The theoretically calculated elasticity variation can be 

deterrmned: 

= -^ = 157 (Hz) / 2.23e-3 (Hz/Pa) = 70.4e3 Pa 

ajl 

Ar = ̂  -An = -1.094e-5 (Q/Pa) • 70.4e3 Pa = - 0.77 £2. (4.5) 

Even though the elasticity sensitivity is an order of magnitude higher than for the previous 

composite resonator analysis, the amount of frequency shift and corresponding elasticity 

change is smaller than the mass induced changes. 

Viscositv variation The expected contributions to the measured response due to mass 

and elasticity variations as previously demonstrated account for most of the frequency 

changes but for only 1.32 Q of the 8.2 SI measured resistance variation. Thus, an induced 

viscosity reduction can be attributed to 84% of the resistance change. The theoretically 

calculated series resonance frequency and resistance variation as a function of polymer 
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Figure 4.14. Series resonance frequency variation and series resistance as a function of 

polymer elasticity or acoustic phase. For a calculated elasticity of 1.6e7 Pa, 

the acoustic phase is 60*. 

viscosity is graphically illustrated in Figure 4.15. From the calculated viscosity 

sensitivities, the expected resistance and frequency changes due to viscosity is; 

ATI = 4^ = - 6.88 (£2)/ 14255.95 (£2/Pa-sec) = - 0.483e-3 (Pa-sec) 
or 
ari 

A f = ^  A t !  =  6 5 9 4 . 5  ( H z / P a - s e c )  -  -  0 . 4 8 3 e - 3  ( P a - s e c )  =  -  2 . 9  ( H z ) ,  
tfn 

(4.6) 

The change in the resonance frequency due to viscosity changes is fairly minimal and thus 

not much error is introduced by ignoring this effect However, cross-linking of the rubber 

chains significantly decreases the viscosity, from 3.5e-3 to 3.02 Pa-sec, a change of 
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Figure 4.15. Series resonance frequency variation and series resistance as a function of 

polymer viscosity. Nominal viscosity for film considered is 3.5e-3 Pa-sec. 

13.8%. Physically, the restriction of the movement of the polymer chains by the photo-

induced cross-linking must decrease the amount of energy dissipated by friction in the 

elastic wave as it propagates in the visco-elastic layer. 

HR 100 Coated QCM Conclusion 

For the HR 100 negative photoresist, the photo-induced cross-linking results in the 

increase of the resonance frequency and a corresponding decrease in the series resistance. 

When the measured UV-visible peak absorbence reaction rate is compared to the calculated 

reaction rates of the frequency deviations and series resistance, excellent correlation 

between the chemistry (concentration of reactive species) and the piezoelectric mechanics 

results. Interpretation of the resonance frequency deviation is complicated by the N2 

molecules liberated during the photo-induced cross-linking of the polymer chains. Thus, 

from the frequency calculations, crosslinking of the polymer chains not only increases the 
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elastic storage modulus but also decreases the mass density. As was shown, these effects 

can be separately accounted for, however, measurement interpretation is clouded by the net 

effect which each contributes to the frequency change. Note that negligible error is 

introduced by ignoring the frequency changes due to any viscosity variations. Conversely, 

most of the measured resistance changes can be attributed to photo-induced viscosity 

variations with small error introduced by ignoring the mass and elasticity related resistance 

effects. Crosslinking of the polymer film is related to the viscosity in a way which is 

independent of the expected elastic changes. Thus for the HR-100 film analyzed, the cross-

linking of the polymer chains can be measured by monitoring the series resistance change 

which dominates over the elasticity and mass variations. 
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CHAPTER 5. OSCILLATOR MICROSENSOR SYSTEM DESIGN 

In the research and development stages, the viscoelastic theory of polymer films 

provides a great deal of information on how the piezoelectric sensor will respond to various 

loading conditions. The impedance measurements made in lab simulations is indeed 

necessary for proper characterization of the sensor's selectivity to various gas phase 

chemical analytes that would be present in certain industrial environments. One of the 

driving forces behind the use of piezoelectric sensors as opposed to large monitoring 

systems is then- small size. Thus, in order to take advantage of their small size and 

potential industrial usage, an integrated chemical sensing system has been designed based 

upon the Tektronix high speed complementary bipolar C-Pi''^'^ process. This system 

employs the frequency selectivity of the chemical sensing TFR as the feedback element in 

integrated Colpitts oscillators. To assist in the discrimination of various chemical species, 

the differential design uses the chemical sensing array concept which consists of three 

TFR's. Two TFR sensors will be coated with a chemically selective coating which permits 

the sorbance of a gas phase analyte while one of the TFR sensors will act as a reference and 

is passivated so as to not respond to any gas phase analytes. The output oscillation signal 

of the reference and one of chemical sensing TFR's is input into a Gilbert cell which mixes 

the signal down to a baseband difference signal. The difference signal tracks the induced 

frequency deviations of the chemical sensor and being at baseband, the measurement 

acquisition and signal processing electronics can be substantially simpler. Furthermore, the 

temperature drift of the TFR oscillators can be compensated by the mixing of the two 

oscillators. Since the two oscillators are based upon the same circuit structure with similar 

TFR's, the oscillators should track each others temperature drift resulting in a minimal 

frequency fluctuation due to temperature variation. 
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System Design Methodology 

A block diagram illustrating the functional subcircuits of the chemical sensing system is 

shown in Figure 5.1. As shown, the system consists of three Colpitis oscillators, three 

level-shifting isolation amplifiers, two Gilbert cell mixers, and four Class AB output 

stages. In this section, the theory of operation of each functional unit is presented. 

Besides the fundamental design theory, the performance tradeoffs and functionality are 

discussed. 

Sensor Osc. #1 

Afl Dual Class AB 
Output Drivers 

Reference Osc. 

Sensor Osc. #2 

AO Dual Class AB 
Output Drivers 

Rgure 5.1. Functional Block Diagram of integrated chemical sensing system. 

Oscillator subcircuit 

The oscillator subcu-cuit used in the sensing system is illustrated in the signal flow 

diagram in Figure 5.2. The topology is known as the Colpitis oscillator which can be 

thought of as an emitter-follower with a capacitlve tapped tank circuit. The Colpitis 



www.manaraa.com

114 

R1 

TFR 
R2 

R3 

Signal flow diagram for the Colpitts oscillator where the TFR is represented 

by the series combination of a resistance Rs and reactance Xs. 

topology was chosen to be compatible with the one-port TFR geometry and also for the 

reduction of parasitic connections. The Colpitts oscillator is commonly used in RF 

applications however, as Parzen [63] notes, the Colpitts oscillator is of "...greatest 

difficulty to design." For the case of the sensor circuit, this difficulty is enhanced by the 

wide variation in operating parameters encountered by the TFR sensor. In the integrated 

design, operating specifications include a broad frequency of oscillation from 600 MHz to 

1100 MHz. Due to the loading conditions encountered under sensing conditions, the 

maximum series resistance which the gain of the oscillation will overcame is 15 ohms. The 

conditions necessary to sustain oscillations are those which satisfy the Barkhausen criteria. 

Simply stated, the Barkhausen criteria requires the gain of the amplifier to be great enough 

to overcome the losses in the feedback circuit at a frequency where the sum of the phase 

contributions in the closed loop is equal to a multiple of 2jt radians. To simplify this 

analysis, the signal flow graph illustrated in Figure 5.2 assumes there is a single flow 

direction and no reflections due to impedance mismatches. Furthermore, the shunt biasing 

resistors represented by Rl, R2, and R3 are considered large enough that they do not effect 
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signal flow or degrade the loaded Q of the TFR. Using these simplifications, the 

Barkhausen criteria for the Colpitts oscillator can be shown to be [64]: 

Gain: ^=5 -(l+^)>l (5.1) 
gm+Rs(toC2F ^ C,/ 

Phase: —L L = o . (5.2) 
CO Ci 0) C2 

The gain criteria, Eq. (5.1), indicates that gain is achieved by increasing the transistor 

transconductance gm, minimizing the TFR resistance Rs, and maximizing the capacitance 

ratio C2/C1. The phase criteria, Eq. (5.2), states that the TFR has to operate with some 

inductive reactance to cancel out the capacitive reactance of the series combination of CI 

and C2. This implies that the TFR will be operating at a frequency slightly above series 

resonance. However, the Barkhausen criteria applies for small signal conditions at which 

oscillations will occur. Under this condition, the oscillation signal will begin to grow, after 

which the poles begin to shift and the nonlinearities in the circuit limit the amplitude under 

large signal conditions. The oscillation amplitude will stabilize at a level where the large 

signal gain of the oscillator is equal to one. 

The electrical schematic of the integrated Colpitts oscillator is shown on Figure 5.3. 

The only external component necessary is the feedback resonator which is connected up to 

the TFR pad. The output of the oscillator is indicated by the OSC pad. The emitter 

follower transistors are the parallel Q1-Q2 N8 bipolar transistors. The N8 transistor is 

designed to operate at maximum ft of 9.2 GHz at a collector current of 4 mA or current 

density of 130 jiA/jim^ [73]. For this design, each of the N8 transistors were biased to 

maximize their transconductance which occurred at approximately 7mA. The bias 

stabilization was provided by the Widler current source consisting of transistors Q3 
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through Q6. In order to provide enough gain to overcome a TFR series resistance of 15 

iJ's at IGHz, a capacitor ratio of 1 (C2/C1 in Figure 5.2) was necessary. CI on the IC 

consists of the five parallel 0.8 pF MOS capacitors, C6-C10. C2 consists of the five 

parallel 0.8 pF MOS capacitors, C1-C5. The price paid for small signal gain is output 

voltage swing since the output impedance is dominated by the small impedance of C1-C5. 

The small signal loop gain at 360* closed loop phase and loaded Q using a typical 970 MHz 

TFR with a series resistance of 8 £2's and unloaded Q of 145 simulated out to be 1.45 v/v 

with Ql =110. 

Isolation amplifier subcircuit 

In oscillator design, the output impedance load is crucial in determining the performance 

of the oscillator. If the output of the oscillator is loaded by a low impedance level, the 

loaded Q of the oscillator is degraded. As will be shown in the phase noise section, the 

frequency stability suffers when the loaded Q decreases. Also, to maintain the signal to 

noise ratio of the output oscillation signal, maximum voltage transfer requires a high load 

impedance (an open circuit is an infinite load impedance). Besides providing a high 

impedance load, the amplifier must also isolate the oscillator from any changing impedance 

levels due to the presence of the other large signal oscillator outputs. The large signal 

switching in the mixer due to one of the oscillation signals modulates the input impedance 

as seen by the other oscillation input signal. In a one port negative resistance oscillator, 

any changing load impedance results in a corresponding change in oscillation frequency. 

Consequently, if the modulating impedance level is not isolated, the oscillators will be 

influenced by each other's changing large signal load impedance resulting in frequency 

pulling. In the sensor system, frequency pulling will result in a smaller difference 

firequency signal out of the mixer which represents a loss of measurand sensitivity. 

The circuit diagram for the isolation amplifier for one of the sensor oscillators is shown 

in Figure 5.4. Besides providing high isolation and voltage transfer, this subcircuit must 
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Figure 5.4. Electrical circuit schematic for the integrated isolation amplifier. 
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also create a differential signal from a single oscillation output and provide the DC level 

shifting for proper biasing of the next mixer stage. The high impedance level is provided 

by the initial emitter degenerated gain stage consisting of the N2 transistor Q1 and resistors 

RI and R2. For a current gain of 8 at 1 GHz, the input resistance looking into the base, the 

emitter resistance multiplied by 8+1, simulated out to be approximately 9 kXi!. This value 

provided minimum loaded Q degradation of the oscillator. Level shifting was 

accomplished by the diode connected transistors Q2-Q7 and Q11-Q13. In order to 

understand the isolation design, consider the signal flow path for each of the differential 

mixer inputs. At the base of Q8, the shifted signal out of the oscillator is split. For one 

signal, an 180* phase shift is accomplished at the collector of the emitter degenerated gain 

stage at transistor Q8. This signal is followed with output driver Q9 to the mbcer input port 

MIXERB. Note that any fluctuating impedance level created by the large signal switching 

of the mixer looking into the MIXERB port is isolated by the high impedance reverse-

biased collector-base junction of transistor Q8. Dual isolation for both mixer signals is also 

provided by the high impedance reverse biased junction of collector Ql. The other signal 

split at the base of Q8 is 180* phase shifted at the collector of the QIO gain stage. After 

passing through the level shifting transistors, Q11-Q13, the signal is ISO* phase shifted 

again at the collector of the Q14 stage followed by the output driver at Q15 to the mixer 

input port MDCERA. This signal is phase shifted twice resulting in a 180* phase difference 

between the two input mixer signals necessary for a differential signal. The impedance 

level isolation looking into the MDCERA port is provided by the reverse biased collector of 

Q14. Current bias stabilization was provided by the Widler current source consisting of 

transistors Q16-Q29. The reference bias current at the collector of Q16 was set at 1mA, the 

optimum current for maximum fx for the N2 bipolar transistors used in this stage. 
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Mixer subcircuit 

The purpose of this subcircuit is to downconvert the sensor RF signal to a low 

frequency baseband signal. This is accomplished by the "mixing" of the reference and 

sensor oscillator outputs. In the time domain, when two sinusoidal signals are multiplied 

together, the resulting ideal output in the frequency domain is the sum and difference 

frequency spectra. However, the inherent nonlinearities in the circuit mix the difference 

signal across the frequency band resulting in difference harmonics across the fundamental 

sidebands as well as the difference sidebands as illustrated in Figure 5.5. For frequency 

w T3 Z) 

Q. 
E C3 

Af = fl-fo 

i A 

i 1 i 
[> to U> -U 
^ ^ ^ ^ 
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2 S 
+ + + 

to 

Figure 5.5. Typical frequency spectmm output for the mixed product of two signals 

at frequencies of fo and fl. 

downconversion, the desired output is the first harmonic difference signal at frequency Af. 

The mixer circuit used to accomplish the frequency downconversion, shown in Figure 5.6, 

is an analog multiplier Gilbert cell based on the transconductance multiplier principle [64]. 

The multiplier core consists of the six transistors Q1-Q6 where the inputs are the 

differential voltages MDCERINA-B and MKERINC-D. For mixer applications, it is not 

necessary to apply tanh'^ predistortion to the input to the A-B input of the cross-coupled 
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parallel differential transistor pairs Q3-Q6. The presence of the emitter degeneration 

resistor R1 between the differential pair Q1-Q2 does provides transconductance 

linearization over a wide operating range, with the net differential output voltage at the 

cross-coupled collectors Q3-Q6 being: 

For this specific mixing application, the emitter degeneration resistor R1 was used to 

decrease the conversion gain at the output. The dc bias level at Vq was designed at 3.83 

volts which is one Vbe drop above the center bias level of 3 volts necessary for the class 

AB push-pull output stage using a single 6 volt power supply. To avoid clipping, the 

maximum signal swing at the mixer output is approximately 2.2 volts. This allows a 1.25 

Vpeak signal to be applied to the Vref input before output clipping takes place. 

The dual class AB output stage circuit diagram is also shown on Figure 5.6. Consider 

the first stage which is buffered by the emitter follower transistor Qll. The class AB 

driver transistors, Q19-Q20 and Q21-Q22, are biased using transistors Q12 and Q15 

which also act as emitter followers, thus providing high input impedance at the base of Q12 

and Q15. The current reference is provided by the Widler current source, Q50 and Q40, 

and mirrored by Q16-Q18 and Q13-Q14. The actual class AB output drivers consist of the 

parallel NPN N8 transistors, Q19 and Q20, and the parallel PNP P8 transistors. 

Normally, in integrated circuit design, the push-pull capability of the output stage was 

difficult to attain due to the lack of high frequency PNP transistors. However, the 

Tektronix C-Pi process offers the added flexibility of high speed PNP transistors which 

attain an ft of 5.7 GHz at a current density of 130 ^A/|im^ [73]. 

(5.3) 
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Phase Noise Analysis 

In the application of the TFR as a mass sensor, a full scale response of 15 PPM 

frequency shift was reported for a TFR coated with a carboxylic acid-terminated thiolate 

monolayer [1]. For a typical resonance frequency of 950 MHz, a 15 PPM response 

corresponds to a frequency shift of 14 kHz. When the TFR is used as the frequency 

selective feedback element in the oscillator loop, the induced mass-loaded TFR resonance 

frequency shift will reflect as the output oscillation frequency shift in the absence of noise 

induced frequency instability. However, noise is inherent in any real oscillator. If the 

noise induced frequency instability is too strong, the possibility of the noise masking out 

the signal can arise. The ability to differentiate between the frequency response of the 

signal and the noise results in the loss of sensitivity, especially at low frequency shifts. 

Noise overview 

The frequency stability of an oscillator can be thought of as the ability to produce the 

same oscillation frequency over a period of time. If the period of time over which the 

frequency drifts about the nominal frequency is less than a few seconds, the frequency 

stability is described as being short term. The noise components which cause the 

frequency instability can be classified in two categories: deterministic and random. 

Deterministic sources are those related to discrete signal sources such as power lines, 

mechanical vibrations, etc. These sources can be controlled by proper shielding and 

fixturing. The second type of noise source which cause frequency instability is random in 

nature and is commonly called phase noise [66]. In an oscillator, sources of random phase 

noise include thermal noise, shot noise, and flicker (1/f) noise. Due to the non-linearities in 

the oscillator, the noise components intermodulate with each other and with the carrier. 

The resulting intermodulation results in the upconversion of these noise sources to the 

carrier frequency resulting in harmonic spectral components at small offset frequencies 

from the carrier. This phenomenon is clearly illustrated in the oscillator power spectrum in 
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the frequency domain which appears on a spectrum analyzer. Instead of an ideal impulse 

function, the power spectrum of an oscillator is distributed over a bandwidth of frequencies 

about the center carrier frequency. 

Various models and approaches have been used to model and predict the phase noise of 

oscillators. One such approach is to characterize each phase noise source and determine the 

oscillator noise performance including the frequency conversion of noise through both 

circuit nonlinearities and noise source modulation [67]. An alternative qualitative means to 

model oscillator phase noise is that of D.B. Leeson [40] who modeled the oscillator in the 

feedback topology of Figure 5.7. The feedback oscillator consists of three major building 

blocks; a limiting amplifier which removes residual AM noise, a feedback resonator, and an 

input noise source. In this model several assumptions are made. The oscillator is assumed 

to operate at the center firequency of the bandpass resonator. This assumption maintains 

that the phase shift through the resonator has a constant slope with frequency over half the 

resonator bandwidth. The half resonator bandwidth is given as fo/2QL. where fo is the 

oscillation frequency and Ql is the loaded Q of the resonator. Oscillations will occur where 

the loop gain is unity with a loop phase shift (or multiple) of 360*. This model also 

assumes that the limiting action of the amplifier removes the AM component of the noise. 

Resonator 

Limiting 
Amplifier 

Figure 5.7. Feedback circuit topology used in Leeson's model. 
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The limiting action of the amplifier results in a strong nonlinear behavior which is the 

source of the low frequency noise source upconversion to the oscillator sidebands up to the 

resonator half bandwidth. The input noise source is assumed to consist of all the noise 

sources including thermal and shot noise from the solid state amplifier which is grouped 

together into an effective noise figure of the amplifier. 

The feedback circuit model of Leeson offers some insight into the upconversion 

characteristics of noise, particularly the low frequency 1/f noise, into the oscillation 

sidebands. All real devices have some offset frequency at which the noise ceases to be 

constant and approaches a 1/f character [68] at low frequencies. Figure 5.8 illustrates this 

model where the top figure is the low fi^uency noise of the open loop oscillator. In most 

oscillator designs using acoustic wave resonators, the dominant source of 1/f noise is 

generally perceived to be the acoustic resonator [42]. When the loop is closed, if the offset 

Open Loop 

2 G F K T  
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1 
f 

Closed Loop 
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f 

Figure 5.8. Open loop noise upconversion in the closed loop Lesson model. 
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frequency of the 1/f noise is less than the half resonator bandwidth, the 1/f noise exhibits a 

close-in phase noise with a characteristic l/f3 slope. This effect is shown on the bottom of 

Figure 5.8. The noise level far from the carrier is the same for both the open and closed 

loop configurations. When the loop is closed, the noise slope within the half bandwidth 

gets multiplied by I/f2. Following the work of Leeson, the single sideband phase noise 

spectral density can be mathematically expressed in equation 5.4 [69]: 

(5.4) 

^=101oJ -f +fl-  + OkTF. 
Ps lfm3(2Q)2 fm2Po(2Q)2 fm Po 

(5.5) 

where Pssb is the single-sideband noise power in a 1-Hz bandwidth, Ps is the carrier 

power, G is the gain of the amplifier, F is the amplifier noise figure, kT is the thermal 

noise, a is the flicker noise coefficient for the resonator, and fm is the Fourier or offset 

frequency. In Eq. (5.4) the terms enclosed in the left bracket represent the open loop phase 

noise of the amplifier and resonator, while the terms enclosed on the right bracket represent 

the closed loop oscillator transfer function. In Equation (5.5), the multiplication in Eq. 

(5.4) is completed which illustrates the oscillator phase noise spectrum dependence on the 

offset frequency slope. Note that in Eq. (5.5), the emergence of a 1/f slope is possible but 

is not generally measured in microwave oscillators [41]. Equation (5.5) indicates several 

methods for reducing the oscillator phase noise. In general, the carrier power should be 

kept as high as possible by using active devices with large saturation levels. The gain of 

the amplifier should be minimized by reducing the losses in the feedback network. The 

flicker and white FM components (component with slopes fm"^ and fm*^. respectively) 

can also be reduced by increasing the loaded Q and using an acoustic wave device with a 
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small flicker noise coefficient a. However, as Parker [41] points out, resonator insertion 

loss and loaded Q are related, and one cannot arbitrarily increase QL without increasing the 

insertion loss. A larger insertion loss results in a larger amplifier gain in order to satisfy the 

unity loop gain criteria for oscillation which increases the phase noise. The two competing 

effects result in an optimum loaded Q of approximately one half the unloaded Q and an 

insertion loss of about 6 dB. 

Phase noise - freQuencv deviation 

One of the standard measurements indicating the spectral purity of the oscillators is the 

single sideband phase noise spectral density, £(fm). as shown in Eq. (5.4) and Eq. (5.5). 

^(fm) is defined as the ratio of the single-sideband power of the phase noise in a 1-Hz 

bandwidth fm Hz away from the carrier to the total signal power [70] and has units of 

dBc/Hz. To relate X(fni) to phase modulation, consider a signal with a modulating 

frequency at fm: 

where Afp is the peak deviation of the sinusoidal modulation. Converting the frequency to 

phase, the frequency modulation results in phase modulation as expressed in Eq. (5.7); 

f = fo + AfpCos(27rfmt) (5.6) 

v(t) = Vs sin{2;rfot + A(j)pSin(27cfmt)) (5.7) 

where Aijjp = Afp/fm is the peak modulation index. In the frequency domain power 

spectrum, the phase modulated signal v(t) would show a fundamental spectral component 
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at fo and two modulated spectral sidebands at +/- fm due to the sinusoidal phase 

modulation. For a small modulation index ( A(}>p « 1 radian), the ratio of one single 

sideband component to the carrier signal can be related using Bessel algebra: 

v(t) = Vs [sin(2jifot) cos(A(})pSin(2Jtfn,t)) + cos(27rfot) sin(A(j)pSin(27cfmt))] 

= Vs [jo(A4)p) sin{27Cfot) + Ji(A(l)p) sin[27C (fo + fm) t] - Ji(A(l)p) sin[2jt (fo - fm) t]] 

= I A(l)p for A(J>p « 1 rad. (5.8) 
® Jo(A(]>p) 

where Jq and J] are Bessel functions of the first kind. For random phase fluctuations, the 

peak modulation index is replaced by V2 A(j>nns- Thus, the power ratio X(fm)a 1 Ohm 

resistor can be related from Eq. (5.8): 

The spectral density of phase fluctuations as illustrated in Figure (5.8) is the mean square 

phase fluctuations in a 1 Hz bandwidth and is equivalent to 2*iXfm) = A(j>rms^ = SjjiCfm). 

Detection limit 

Consider the use of a frequency counter to measure the mixed output frequency of the 

sensor system. A conventional frequency counter counts the number of one way zero 

crossings over a specified amount of time to determine the average oscillation frequency, A 

representative phase modulated signal out of one of the mixed frequency outputs can be 

expressed as: 
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v(t) = Vs sin(2jifot + A(j)psin(2jrfmt +1&)) (5.10) 

where the random phase term d is included to represent the phase difference between the 

oscillator output and the nonsynchronous oscillator clock. The average frequency is 

determined by dividing the number of cycles counted in a time t by lia resulting in: 

f = fo+^sin(27tfn,x + i&) . (5.11) 

The last term represents the frequency error due to phase noise and nonsynchronous 

frequency counter clock. The square error can be expressed as: 

Af^ = sin2(2jtf„,x +1»). (5.12) 

Averaging with respect to which is uniformly distributed from 0 to 2K: 

and substituting in A(l)p2 = 2 A(l)nns^ = 4*£(fm) results in: 

(2nx̂  

The mean square frequency deviation over a specified bandwidth is proportional to the 

integrated noise power: 
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(5.15) 

At this point, the analysis can proceed by spot noise calculations. Spot noise refers to a 

single frequency spectral component of a noise source. The discrete points of the measured 

£(fin) in a 1 Hz bandwidth would then be used in a summation instead of a continuous 

integral. However, in microwave oscillators using acoustic wave resonators, the phase 

noise density is proportional to I/f3 down to the noise floor [41,42,72]. Using an 

expression for the l/f3 slope of the phase noise density [71]: 

Hypothetically, for this case to be correct, a low pass filter must be provided to reject all 

phase noise at all offset frequencies greater that fh. However, if fh is a sufficiently large 

offset frequency, the phase noise contributions for frequencies greater than fh are negligible 

[71]. The low frequency limit is determined by the observation period required to make the 

measurement by the Nyquist rate: fL > 1/2t. A common residual FM bandwidth used in 

specifying rms frequency deviation is firom 20 Hz to 15 kHz [70]. Thus, a liberal 

bandwidth used in this calculation will be from 20 Hz to 1 MHz, requiring at least a 

(5.16) 

and substituting into Eq. (5.15) results in: 

(5.17) 
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minimum sampling time of 25 msec. Carrying out the integration, the rms frequency error 

due to phase noise with a l/f3 slope down to fh: 

As an example, consider the measured phase noise spectral density of a 761.4 MHz thin 

film resonator oscillator designed using the hybrid version of the sensor system. In Figure 

5.9, the measured £(fm) and experimental setup used in this analysis is shown. The 

measurements are performed on the HP 3047 Phase Noise Measurement System [72]. For 

this setup, the phase noise of the oscillator is measured by mixing its signal down to 

baseband with the phase locked HP8662 synthesizer with superior phase noise 

performance to the source under test, and measuring the noise power at small frequency 

offsets. The DCFM (dc frequency modulation) voltage controlled phase noise 

measurement method is used since it allows the system to track the frequency drift of the 

free running oscillator without losing lock. In order to achieve isolation and the proper 

power level into the external phase detector, a 40 dB EIN RF power amplifier (model 

603L) and 20 dB pad is inserted between the oscillator under test and the DCFM input of 

the HP3047 system. 

As shown in Figure 5.9, the measured -C(fm) assumes a l/f3 slope down to the noise 

floor at approximately 1 MHz offset frequency. Note that at offset frequencies below 1 

kHz, the measured phase noise exceeds the small angle criteria and is thus in error. 

However, the l/f^ slope can be assumed up to smaller offset frequencies with negligible 

error. Using the measured phase noise in Figure 5.9, the rms frequency deviation for 

various frequency counter sampling times is calculated below. 

(5.18) 
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Figure 5.9. Phase noise measurement and setup on the HP 3047 for the TFR hybrid 

sensor system. 
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X Afrms 

50 msec. 

100 msec. 

200 msec. 

1 sec. 

31.8 Hz 

15.9 Hz 

7.96 Hz 

1.59 Hz 

A bulk acoustic wave resonators such as the TFR and QCM have mass sensitivities 

which are inversely proportional to the resonator thickness. However, higher frequency 

resonators have substantially higher phase noise. Thus, for sensor comparison, the most 

relevant normalization format is to divide the rms frequency deviation by the carrier 

frequency of the oscillator. The detection linnit is then calculated by dividing the normalized 

rms firequency deviation by the measurand sensitivity: 

where S* is the sensitivity of the measurand. For the TFR, an average reported mass 

sensitivity of -555 cm^/g has been reported [1]. Using a typical 10 MHz mixed frequency 

output of the sensor system, the detection limit varies from 5.7 ng/cm^ (x=50 msec), 1.43 

ng/cm^ (x=200 msec), to 0.29 ng/cm^ (x=l sec). Note that one cannot arbitrarily increase 

the sample time of the frequency counter to decrease the detection limit A larger sample 

time reduces the dynamic response of the sensor. In order to maintain the dynamic 

response of the sensor and yet decrease the rms frequency deviation, a sampling time of 

200 msec, or 5 samples per second, appears to be a reasonable compromise. 

Detection Limit = 
Sx fo 

(5.19) 
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CHAPTER 6. CONCLUSIONS 

Summary of Work 

The goal of this work was to develop the chemical sensing theory for piezoelectric bulk 

wave resonators. In this analysis, the complete piezoelectric theory is utilized to 

characterize the electrical-acoustic properties of the bulk wave resonator. Coupled to the 

resonator's top electrode is a chemical sensing film which operates by absorbing gas phase 

analytes. The sensing film is completely characterized by its mechanical properties which 

include mass density, modulus of elasticity, viscosity, and thickness. In this analysis, the 

coupled elastic wave equations are derived for the composite resonator. In order to apply 

the theory to standard measurement techniques, the electrical admittance is formulated 

which accounts for electrical-acoustic interaction of the piezoelectric resonator and elastic 

perturbations caused by the visco-elastic sensing layer. In this analysis, no approximation 

is made as to the stress or particle displacement variation across the visco-elastic film which 

allows a complete study of the perturbational mechanical variations on the electrical and 

resonance properties of the composite resonator. The results and models from this research 

will be beneficial to surface chemistry studies and also has applications to fabrication 

techniques and electrical circuit modeling. The utility of the modeling theory is applied in 

the design and implementation of an Aluminum-Nitride thin film resonator controlled 

chemical sensing system based upon the Tektronix high speed C-Pi semi-custom integrated 

bipolar process. This system employs the frequency selectivity of the chemical sensing 

TFR as the feedback element in integrated Colpitts oscillators which arc downconverted by 

superheterodyne techniques. Using phase noise theory, the overall detection limit of the 

system output signal is derived. This analysis accounts for fiiequency instability due to the 

phase noise of the sensing system. Thus, the measurand detection limit provides the 
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means of determining the actual sensitivity of the chemical sensor based upon the 

integration times of the frequency counter. 

The early sections of this dissertation provide the underlying piezoelectric and elastic 

wave theory. Under the assumption that the piezoelectric resonators have large lateral 

dimensions as opposed to the thickness dimensions, the applied electric field excites only 

the fundamental acoustic mode. The one-dimensional single-mode approximation allows 

the calculation of the particle displacement wave equation for each of the layers. Using the 

assumed solution form of the wave equation, a complete set of the electrical-acoustic 

boundary equations are formulated, resulting in a 6*6 matrix equation. Applying Maxwell-

Ampere's law, the full electrical admittance expression is derived for the composite single-

mode resonator consisting of a piezoelectric cavity coupled to a viscoelastic overlayer. 

In chapter 3, the equivalent electrical circuit models for the composite resonator cavity 

are derived. This analysis involves assuming a circuit model which is similar to the 

classical Butterworth Van Dyke model for single-moded piezoelectric resonators. Except in 

this case, the derivation is unique in that the viscoelastic overlayer is elastically coupled to 

the piezoelectric resonator. Thus, the formulation involves the full 1-D admittance 

expression from which approximations near resonance are used to linearize the equations 

and ultimately allow the circuit parameters to be de-imbedded. The resulting set of 

expressions for the equivalent circuit elements illustrates the relationships between the 

mechanically varying properties of the visco-elastic film and the electrical measured 

motional impedance parameters. The equivalent circuit element equations are shown to be 

accurate up to approximately 50* of the visco-elastic film overlayer acoustic phase. The 

region of small acoustic phase up to 50* is referred to as the "microbalance regime", where 

the mechanical stress varies linearly across the thickness of the overlayer. 

The derivation of the fiill admittance expression for the composite resonator also allows 

the complete characterization of the electrical and resonance behavior based upon the 
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perturbation of each material property of the overlayer including the modulus of elasticity, 

viscosity, mass density, and thickness. This analysis is unique in that the effect of each of 

the mechanical properties over the complete operational range is independently calculated 

and analyzed. An important result from this analysis deals with the variation of the 

polymer acoustic phase by either thickness extension or elastic modulus decline. In either 

case, the issue pertaining to the presence of mechanical displacement overshoot and the 

phenomenon of "film resonance" are investigated. This analysis shows that the presence of 

90* polymer acoustic phase does not guarantee the film resonance condition for which the 

particle displacement is 180* out of phase with the motion of the driving resonator. The 

fundamental issue is the degree to which the polymer film is coupled to the piezoelectric 

resonator. For the case where the acoustic impedance difference between the piezoelectric 

resonator and viscoelastic film is large, inducing 90* acoustic phase resulted in the film 

resonance condition. The acoustic phase difference is analyzed by calculating the acoustic 

wave reflection coefficient Thus, for large differences, the reflection coefficient is large 

indicating that most of the elastic wave energy is reflected back into the resonator. This is a 

specific case for solid polymer films. If the acoustic impedance match closely as the 

acoustic phase approaches 90*, the reflection coefficient decreases significantly indicating a 

strongly coupled composite resonator. In fact, for this case, the variation of polymer 

acoustic phase greater than 90* does not result in the film resonance condition. The 

presence of a low reflection coefficient results in the particle displacement node position 

moving from the center of the piezoelectric resonator upwards and into the overlayer, 

maintaining the fundamental mode mechanical wave resonance. This second condition 

appears to be a more general result since the viscosity used in this analysis represents a 

nominal value found for most solid polymeric films at temperatures below the glass 

transition temperature. However, increasing viscosity does not equate to film resonance. 

In fact, just the opposite occurs. Increasing the viscosity results in an increasingly damped 
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composite resonator. As the resonator continues to get damped, the particle displacement 

maximum decreases which in turn results in smaller polymer acoustic phase. 

In order to illustrate the utility of the full electrical-mechanical analysis, a photo-induced 

polymerization case is investigated in chapter 4, In this study, a commercially developed 

negative photoresist, HR 100, is studied. HR 100 is based on partially cyclized 

polyisoprene monomers which are photonically cross-linked by the dissociation of an ABC 

photoinitiator into highly reactive nitrene intermediates which form the cross-bond between 

two polyisoprene rubber monomers. The goal of this research is to demonstrate the effects 

that crosslinking has on the composite resonator's electrical behavior and relate this 

information to a stiffening of the elastic modulus. However, one of the first results from 

this study indicates that very little elasticity modulus changes are monitored for film 

thickness which are in the microbalance regime. After further analysis of the characteristics 

of this particular polymer film, the full admittance model shows that at the thickness used, 

the resonance behavior is fairly invariant to elasticity changes. This is clearly iUustrated in 

the graphs of the resonance frequency as a function of polymer elasticity which shows 

small frequency sensitivity to elastic modulus variations. In the thickness variation 

calculations, the resonance frequency varies linearly with increasing thickness which 

indicates an acoustic cavity extension situation with small mechanical stress variation across 

the film. However, as the thickness is increased, a characteristic knee is apparent after 

which the resonance frequency relationship to thickness is fau-ly non-linear. The elasticity 

sensitivity calculations show that beyond the thickness knee, the frequency is highly 

sensitive to elasticity changes. The second analysis considered in this study is one which 

illustrates the mechanical properties necessary for the electrical monitoring of the photo-

induced elasticity changes. In this case, the theory is used to differentiate between the 

frequency changes due to the photoinitiator nitrogen released mass and the structiu"ally 

stiffened elasticity modulus. These results indicate that even for this case, it is still very 
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difficult to account accurately for the elastic stiffening effect This is due to the fact that in 

order to be sensitive for elasticity changes, the polymer film must be thicker which results 

in an increasingly damped resonance condition. The preparation of the films is complicated 

by the inconsistency of the film characteristics for thicker films by spin coating methods 

due to induced film stress caused by multiple applications. Thus, film preparation which 

meets the criteria for elasticity sensitivity by this method remains a statistical exercise. 

In chapter 5, an integrated chemical sensing system is designed based on the Tektronix 

high speed complementary bipolar C-Pi process. This system employs the frequency 

selectivity of the chemical sensing TFR as the feedback element in integrated Colpitts 

oscillators. A differential array concept is utilized in this design for temperature stability 

and also for increased analyte specificitivity. However, in any sensor technology, the 

ultimate factor used in determining the overall measurand sensitivity depends upon the 

ability to discriminate the desired signal change over the system noise. For the differential 

sensor system, the output signal is fed into a frequency counter which counts the zero 

crossings to calculate the average frequency. In this section, a derivation is performed 

which calculates the rms fi-equency error based upon the measured oscillator phase noise 

and the integration time set on the fi^uency counter. Normalizing the rms fr^equcncy error 

by the carrier frequency, the detection limit is calculated for a typical TFR based signal. 

Since the TFR operates at a relatively high resonance frequency, the system performance 

places a higher burden on the electronic design since the phase noise is substantially larger 

with frequency as demonstrated by the Leeson model. However, the phase noise 

calculation quantitatively proves that the randomness of the phase noise can be filtered out 

by increasing the integration time of the frequency counter. However, a tradeoff between 

the dynamic responsiveness of the system and the integration time exists. Thus, one 

cannot arbitrarily increase the integration time without considering its effect on rapidly 

changing analyte concentrations. 
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Direction of Future Work 

The work presented in this paper leads to several possible areas of future development. 

In this author's opinion, a larger measurand response can be attained by exploiting the 

elastic response of chemical sensing films. The development of analyte absorbent-specific 

sensing films appears to be a very difficult task to overcome since there are so many 

interfering analytes which absorb in similar ways. Perhaps, a different approach would be 

to engineer films which chemically react in such a way that the internal film structure is 

vastly changed (either cross-linking of polymer chains or breaking of bonds). Coupled 

with this study, a parallel effort should concentrate on gaining a greater understanding of 

the acoustics on the molecular level. A greater level of understanding of the elastic time 

constant of the various polymer films needs to be investigated. The possibility exists that 

the cross-linking of the polymer chains induces elastic time constant changes which are not 

affected by the frequency of operation of the piezoelectric cavity. As noted by Matheson 

[48, page 233]: 

The molecular theories of the viscoelasticity of polymers ... show that the 

period of such an ultrasonic wave is much shorter than many of the relaxation 

times for the motion of polymer chains. Hence with longitudinal waves of 

fi-equencies greater than 1 MHz it is only possible to study rapid, localized motions 

of polymer chains. 

Thus, the need for a polymer chemist to study the molecular acoustics is warranted. 

From the electronics side, an extension of this work would be to analyze other oscillator 

types. Perhaps, the phase noise performance can be enhanced by using a different 

feedback topology. One of the problems with the present design is achieving enough gain 

to overcome a motional series resistance greater than 15 Cl. This is due to the use of an 
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emitter follower as the gain stage in the Colpitts oscillator. At best, the emitter follower 

provides unity gain. It's primary purpose is to provide a high input impedance. The gain 

in the Colpitts oscillator is achieved by the step up impedance transformer of the feedback 

capacitors. The use of a Pierce oscillator with a large amount of gain might be one 

possibility except that the connection parasitics are twice that for a Colpitts oscillator. Also, 

a large amount of electronics could be eliminated if an integrated oscillator was developed 

which output a differential signal. Using discrete rf chokes, this is possible, however in 

semi-custom integrated circuit design one does not have that flexibility. 
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APPENDIX A: AT-CUT QUARTZ RESONATOR ANALYSIS 

The piezoelectric resonator considered in this analysis is alpha Quartz which is a trigonal 

crystal of the 32 class [20]. The permittivity, elastic, and piezoelectric matrices for the 

trigonal quartz structure in matrix notation are given as: 

ei i  0  0  

0 ei i  0  

0  0  £33 

Cll  C12 c i3  C14 0  0  

C12 Cll  C13 -C14 0 0 

C13 C13 C33 0 0 0 

C14 -C14 0 C44 0 0 

0 0 0 0 C44 C14 

0 0 0 0 Cl4 C66 

e i i  -e i i  0 ei4 0 0 

0 0 0 0 -ei4 -ei i  

0 0 0 0 0 0 
(A.1) 

The quartz AT-cut is a Y-cut rotated an angle of 35.25* clockwise about the x-axis. A Y-

cut indicates that the thickness of the plate is in the Y-coordinate direction. Thus, to stay 

consistent with standard AT-quartz notation, the thickness direction will be the Y or X2 

direction. The analysis for the AT-cut quartz crystal (QCM) parallels that of the thickness 

mode TFR, except for the QCM, the excited mode is a shear thickness mode. That is, 

when an electric field is applied across the crystal, the particle displacement is in a direction 
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transverse to the thickness direction. As is done in Eq. (2.19), the constitutive electric flux 

density expression can be substituted into Gauss's law, resulting in the potential expression 

for the AT QCM: 

()) = ^u,+EX2 + F (A.2) 
£22 

where as for the TFR, E and F are integration constants. Note that the e26 piezoelectric 

constant couples to ui, or the X direction particle displacement Thus, the stress equation 

for this case results in: 

Tjl = C^ Ui,2 + 626 E (A.3) 

where the complex elastic constant is defined as: 

^ = cgi"+jciniQ (A.4) 

for which tiie real part is the piezoelectrically stiffened elastic constant: 

C^=C66+^ (A.5) 
^22 

and riQ is the phenomenological viscosity of the QCM. The resulting particle displacement 

wave equation for this analysis is: 

Cii Ui,22 + p (0^ ui = 0 (A.6) 
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which has the same assumed solution form as Eq.(2.43): 

ui = A sin(kq X2) + B cos(kq X2) (A.7) 

where A and B are constants of integration and kq is the complex propagation constant in 

the quartz: 

- 0 0)^ 
= . (A.8) 

^65 

The particle displacement wave equation for the viscoelastic overlayer coupled to the shear 

particle displacement of die QCM utilizes the shear Lame' constant n and viscosity til: 

? ui.22 + p 0)- ui = 0 (A.9) 

for which the assumed solution form is: 

ui = C sin(kL X2) + D cos(kL X2) (A. 10) 

where as before C and D are constants of integration and Rl is the complex propagation 

constant in the overlayer; 

T o (0^ D co^ 
kL^=l^= ^ . (A.11) 

H ^+JW^L 

The solution of the 6 unknown constants (A, B, C, D, E, & F) follow the same analysis 

procedure as was done for the case of the longitudinal-mode TFR. To apply the TFR 
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results to the QCM, replace C33 with cge, 633 with e26. £33 with £22. and A.+2^ with jt. 

The rotated AT-cut QCM constants which are necessary for this analysis calculates out to 

be C66 = 29.0224*109 N/m2 e26 = 0.0949049 CW, and £22 = 39.8162*10-12 F/m 

resulting in a coupling constant of approximately ko^ = 0.00774 or 8.8%, consistent with 

those provided by Kosinski [55]. 
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APPENDIX B: INTEGRATION CONSTANTS SOLUTION 

In this section, the resulting expressions for the constants of integration used in the one-

dimensional resonator analysis is given. For sake of completeness, the fundamental equations 

which pertain to the constants are repeated from Chapter 2. 

The particle displacement wave equations for the piezoelectric resonator and the viscoelastic 

overlayer as given in Eq. (2.43) and Eq. (2.44) are, respectively: 

U3 = A sin(ka x) + B cos(ka x) (B.l) 

U3 = C sin(kL x) + D cos(kL x). (B.2) 

The potential expression from Eq. (2.26) is given as: 

(h = _522i U3 + E X3 + F 

£33 . (B.3) 

The six unknown integration constants of the 6*6 matrix on page 27 can be solved for by 

using matrix arithmetic, resulting in the following expressions: 

A = -£2LV 
den. 

tan (ICLL) cos (kah) ^ 

kaC33 
(B.4) 

B= £2iX 
dea 

1 + tan (kLL) sin (kah) . cos (kah) 

ka C33 

(B.5) 

dea cos (kiJL) 
(B.6) 
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D,SlV °»[MhtL)], ^ 
COS (ICLL) den. 

(B.7) 

E = -^ [ki|^+2nj cos (kah) tan (kLL)+kaC33 sin (kjh)] 
(fcn. 

(B.8) 

£22! V 
F= 

den. 
cos (kah) -1 - tan (kxL) sin (kah) 

kaC33 
(B.9) 

den. = cos (kah) ki, h (a.+2h) tan (kLL) + 2 S22_ 
^33. 

+ sin (kah) h C33 - £22! tan (kLL) 
kaC33 ^33 

o 633-
E33 

(B.IO) 
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APPENDIX C: FORTRAN PROGRAM QU_LEN5.F0R 

The FORTRAN program QU_LEN5.F0R which was used to calculate the series 

resonance frequencies and motional impedance parameters from the fundamental 1-D 

admittance expression as a function of changing viscoelasdc overlayer thickness is listed 

below. This program also calculates the BVD resonance frequencies and motional 

impedance parameters for varying overlayer thickness. To use this program, the initial 

starting resonance frequencies for the models must be entered. This program was written 

such that any of the viscoelastic overlayer's material parameters could be varied by 

replacing the independent thickness variable with the varymg parameter of interest 

C 
C PROGRAM QU_LEN5.F0R 
C Date: 3-20-94 
C Function: Calculates the impedance of the composite QCM resonator loaded 
C with a viscoelastic overlayer. This program calculates the series 
C resonance frequency, Q, and the BVD circuit parameters as a function 
C of varying thickness. 
C Originator: R.P. OToole 
CSDEBUG 

Double Precision fl,f3,f,f3a,df,dfl,wl,fser,w3,wlow,whigh,f2,w2 
Double Precision fsl(501),fs3(501),fs33(501).fs4(501).fs5(501) 
Double Precision maxre,readm,boff,f4a,f5a,f4,f5,w4,w5,dfa,df2 
Double Precision r3db,zmagl,zmag2,flow,fhigh 
Double Precision rs31,cs31,ls3al,ls3bl,rx,cx,lx 
Double Precision ls31jsllJslljin,cm 
Double Precision readm34"eadm4 jeadni5 
Double Precision maxrc3,maxre4,maxre5 
Double Precision pL,cL,cLx,L,vL 
Double Precision rsl(501).cparl(501).Ll(501),L0,dL 
Double Precision Ql(501),lsl(501),csl(501) 
Double Precision ls2(501),cs2(50I),Q2(501),Q3(501) 
Double Precision rs3(50I),cs3(501),ls3(501),rsl(501),lsl(501) 
Double Precision delfsl,delfs3,delfs4,delfs5,delfs,QBW 

RE AL w 1 flag,w2flag,zo,intjfl(501 ),intj3fl(501) 
REAL A,ep33,c33u,c33s,e33,pi,h,co,ko2,va,nu,pa 
REAL setstop,lowfreq,upfreq,zbwL,zbwH,wbwl 
REAL fmult,intj4fl(501),intj5fl(501) 

Double Complex adm,zser,zserl(10),zser2 
C Double Complex zl,z2,z3,z4,z5,imp 
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Double Complex y3,y4,y5 

COMPLEX i 

INTEGER j,k,ll,n,m,intj,intj3,intj4,intj5,fx,incr,kl ,ml 
INTEGER j2,niter,flagl 

C CHARACTER*! input 

C Variables Used 
C 
C zin: input impedance 
C yin: input admittance 
C co: static capacitance 
C w: radian frequency 
C f: frequency 
C df: fr^uency interval between points 
C n: number of impedance points 
C m: number of thickness points 
C A: area(m'^2) 
C pi: 3.14159265359 
C fmult: frequency bandwidth multiplication constant - used to increase frequency 
C range if resonace frequency is not found 
C intj,intj3,intj4,intj5: array integer of frequency array where resonace occurs 
C maxre,maxre3,maxre4,maxre5: maximum conductance for circuit models 
C Resonator Constants 
C c33u: elastic constant unstiffened (N/m'^2) 
C c33s: elastic constant stiffened 
C nu: viscosity of piezoid(N 
C e33: piezoelectric coefficient (C/m'^2) 
C ep33: dielectric constant (F/m) 
C h: thickness 
C ka: complex propagation constant 
C va: wave velocity 
C pa: piezoelectric density 
C yo: constant = (pa*w'^2*h'^2/c33s)'H).5 
C yl: yl=ka*h = yo/(l+jx)'H).5 
C x: w*nu/c33s 
C ko2: coupling coefficient k'^2 = e33'^2/(ep33*c33s) 
C kl: complex coupling coefficient = (ko2/(l + i x))'H).5 
C Viscoelastic Overlayer Constants 
C cL: real elastic constant for overlayer 
C cLx: viscosity constant for overlayer 
C pL: viscoelastic overlayer density 
C L; thickness of overlayer 
C LO: initial overlayer thickness 
C Ll(k): array of overlayer thickness=LO + (k-l)*dL 
C dL: thickness increment 
C vL: wave velocity in overlayer 
C kL: complex propagation constant in the overlayer 
C Lambda: complex constant (viscoelastic overlayer) 
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C 
C Circuit Model Parameters 
C fsl(k): series resonant frequency 
C rsl(k): series motional resistance 
C Ql(k): quality factor = ws/(whigh-wlow) 
C Isl(k): series motional inductance = rsl(k)/(whigh-wlow) 
C csl(k): series motional capacitance = l/( ws**2 Isl(k)) 
C ls2(k): series motional inductance = 1/(4 pi) dX(f)/df 
C cs2(k); series motional capacitance = l/(ws**2 ls2(k)) 
C Q2(k); quality factor = wsls2(k)/rsl(k) 
C cparl (k): Boff/(2 pi f 1 (intj)) = parallel electrical capacitance 
C Boff: susceptance offset due to parallel capacitor 
C zser(k); series impedance with the parallel capacitance impedance 
C deimbedded 
C zmag: impedance magnitude of zser(k) 
C wlow: low frequency where zmag = Sqrt(2)rsl(k) 
C whigh: high frequency where zmag = Sqrt(2)rsl(k) 
C wlflag,w2flag: flag variables used to determine if wlow and whigh 
C are calculated 
C 
C Theoretical Derived Model Parameters 
C fs3(k): series resonance frequency for BVB3 model 
C fs4(k) series resonance frequency for BVD4 model 
C fs5(k) series resonance frequency for BVD5 model 
C rs3(k): series motional resistance for resonator 
C ls3(k): series motional inductance for resonator 
C cs3(k): series motional capacitance for resonator 
C rsl(k): series motional resistance for viscoelastic overlayer 
C Isl(k): series motional inductance for viscoelastic overlayer 
C rx: resistance used in BVD4 model 
C cx: capacitance used in BVD4 model 
C Ix: inductance used in BVD4 model 
C rm: resistance used in BVD5 model 
C cm: capacitance used in BVD5 model 
C 

C Set fr^uency: unloaded 

f=8.829510d6 
df=0.01 
n=l00000 
zo=50.0 
pi=3.14159265359 
i=(0.0.1.0) 

C Enter Material Constants for Quartz: C66, e26, ep22 

c33u= 29.0224d9 
e33= 0.0949049 
ep33= 39.8162d-12 
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pa=2648.0 
nu=9.22d-3 
h=184.58534d-6 
A=pl*(3.I75d-3)*(3.175d-3) 

^ lit Ik** Quelle Ik 
C Enter Material Constants for Viscoelastic Overlayer 
Q ****************************************** j|:*l|c*** 

cL=2.0d7 
cLx=3.5d-3 
pL=850.0 
L=3.4d-6 
vL=DSQRT(cUpL) 

************************************ 
C calulate Co,c33,ko'^2 
Q ***********************:|t; |c*********** 

co=ep33*A/h 
c33s=c33u+(e33*e33)/ep33 
ko2=(e33**2)/(ep33*c33s) 
va=SQRT(c33^pa) 

C Calculate impedance and admittance 
*************************:|(***i|c*** 

m=120 
do 5 k=l,m,l 
if((k .GE. 1) .AND. (k .LE. 90))then 

L0=0.1d-6 
dL=0.01d-6 
incr=k 
fx=5 

end if 
if((k .GE. 91) .AND. (k .LE. 281))then 

LO=1.0d-6 
dL=0.1d-6 
incr=k-90 
fx=5 

end if 
C if((k .GE. 181) .AND. (k .LE. 270))thcn 
C L0=1.0e-6 
C dL=0.1e-6 
C incr^k-180 
C fx=5 
C end if 

Ll(k) = LO + (incr-l)*dL 
L=Ll{k) 
vL=SQRT(cL/pL) 
fniult=1.0 

niter=2 
if(k.LE. 2)then 
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niter=l 
end if 

do 12 j2=I,niter,l 

setstop = 100.0 
fx=5 
maxre= -1.0 
maxre3= -1.0 
maxre4= -1.0 
iTiaxre5=-1.0 
wlflag=10.G 
w2flag=10.0 
upfreq=0.0 
lowfreq=0.0 
intj=l 
intj3=l 
intj4=l 
intj5=I 
flagl=10 

if(k .LE. 2)then 
df=0.1 
f = 8.972695d6-50000.0*df*fmult 
f3a=8.972745d6-50000.0*df*fmult 
f4a=8.972745d6-50000.0*df^fmult 
f5a=8.972745d6-50000.0*df*finult 
n=INT(100000*fmult) 

end if 
if(k .GE. 3)then 

if(j2 .LE. l)then 
delfsl = DABS(fsl(k-l) - fsl(k-2)) 
delfs3=DABS(fs3(k-l) - fs3(k-2)) 
delfs4=DABS(fs4(k-l) - fs4(k-2)) 
delfs5=DABS(fs5(k-l) - fs5(k-2)) 
delfs = 10.0*DM AX 1 (delfs I,delfs3,delfs4,delfs5) 

if(incr .EQ. 2)then 
delfs = 40.0*DMAXl(delfsl,delfs3,ddfs4,delfs5) 

end if 

if(delfs .LT. 5.0)then 
delfs=10.0 

end if 

if(delfs .LE, 100.0d0)then 
df=1.0d-2 

end if 
if((delfs .GT. lOO.OdO) .AND. (delfs .LE. 1.0d3))then 

df=1.0d-l 
end if 
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if((delfs .GT. 1.0d3) .AND. (delfs .LE. 10.0d3))then 
df=1.0d0 

end if 
if(delfs .GT. 10.0d3)then 

df=1.0dl 
end if 

n=IDINT((delfs*fmult)/dO 
dfa=df 

f=fsl(k-l) + (fsl(k-l) - fsl(k-2)) - fmult*0.5*delfs 
Oa=fs3(k-l) + (fs3(k-l) - fs3(k-2)) - fmult*0.5*delfs 
f4a=fs4(k-l) + (fs4(k-l) - fs4(k-2)) - fmult*0.5*delfs 
f5a=fs5(k-I) + (fs5(k-l) - fs5(k-2)) - fmult*0.5*delfs 

write(*,*) 'n,df,delfs',n,df,delfs 
write(*,*) T=',f 
write(*,*) 'f3a=',f3a 
write(*,*) 'f4a=',f4a 
write(*,*) 'f5a=',f5a 
write(*,*) 'paused after j2=I in this loop before end if 

end if 
if(j2 .GE. 2)then 

df=0.01 
n=IDINT(dfa*2.4dO*finult/df) 
write(*,*) 'n dfa fmult',n,dfa,fmult 
f=fsl(k) - 1.2d0*dfa*fmult 
f3a=fs3(k)- I.2d0*dfa*fmu!t 
f4a=fs4(k) - l,2d0*dfa*fmult 
f5a=fs5(k) - 1.2dO*dfa*fmuU 

write(*,*) 'f,fsl(k)=',f,fsl(k) 
write(*.*) 'fia.fs3(k)',f3a,fs3(k) 
write(*,*) 'f4a,fs4(k)=',f4a,fs4(k) 
write(*,*) 'f5a,fs5(k)=',f5a,fs5(k) 
write(*,*) 'df.df 
write(*,*) 'paused after j2=2 in j2=2 loop' 

end if 
end if 

write(*,*) 'k j2 n f,k,j2,n,f 
write(*,*) 'df fmult',df,fmult 

do 10j=l,n,I 

fl=f+1.0d0*j*df 
wl=2.0*pi*fl 

f3=f3a+1.0d0*j*df 
w3=2.0*pi*B 
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f4=f4a+1.0d0*j*df 
w4=2.0*pi*f4 

f5=f5a+1.0d0*j*df 
w5=2.0*pi*f5 

CALL CalcAdm(w I ,c33s,nu,cL,cLx,pL,pa,h,L,coJio2,i,adm) 
C 
C 
C Calculate the equivalent circuit model BVD3 at w3 
C 

CALL res_rlc(pi,nu,h,A,e33,ep33,c33s,w3,pa,rs31 ,cs3 l,ls31 
* ,ls3al,ls3bl) 

CALL rl_lay(w3,L,h,cLx,A,e33,vL,nu,c33s,pL,rsll,lsll) 

y3=i* w3*co+l .0/(rs31 +rsl 1 +i*(w3*(ls31 +lsl 1 )> 
* 1.0/(w3*cs31))) 

C 
C Calculate the equivalent circuit model BVD4 at w4 
C 

CALL res_rlc(pi,nu,h,A,e33,ep33,c33s,w4,pa,rs31 ,cs31 ,ls31 
* ,ls3al,ls3bl) 

CALL rl Jay(w4,L,h,cLx,A,e33,vL,nu,c33s,pL4-sl 1 ,lsl 1) 

CALL res_x(pi,nu,c33s,h,A,e33,pa,rx,cx,lx) 

y4=i*w4*co+1.0/(rs31+i*(w4*ls31-1.0/(w4*cs31)) + 1.0/ 
* ((L0/(rslI+i*w4*lsll))+(1.0/(i*w4*lx))+(1.0/(nc-i/(w4*cx))))) 

C 
c 
C Calculate the equivalent circuit model BVD5 at w5 
C 

CALL res_rlc(pi,nu,h,A,e33,ep33,c33s,w5,pa,rs31 ,cs31 ,ls31 
* ,ls3al,ls3bl) 

CALL rl_lay(w5,L.h,cLx,A,e33,vL,nu,c33s,pL^sl 1 ,Isl 1) 

CALL rc_m(w5,L,h,pL,pa,vL,va,ko2,co,cL,cLx,c33s,nu, 
* rm,cm) 

y5=i*w5*co+1.0/(rsll+i*w5*(lsll+ls3al)+(rm-i/(w5*cm)) 
* *(rs31+i*(w5*ls3bl-1.0/(w5*cs3I)))/(rs31+rm+i*(w5*ls3bl-
* (1.0/(w5*cs3I))-(L0/(w5*cm))))) 

C Calculate the maximum conductance and frequency point where it occurs 

readm=DREAL(adm) 
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if(readm .GT. maxre)then 
maxre=readm 
intj=j 

end if 

readm3=DREAL(y3) 
if(readm3 .GT. maxre3)then 

maxie3=readni3 
intj3=j 

end if 

readm4=DREAL(y4) 
if(readni4 .GT. maxre4)then 

maxre4=readm4 
intj4=j 

end if 

readm5=DREAL(y5) 
if(readm5 .GT. maxre5)then 

maxre5=readm5 
intj5=j 

end if 

10 continue 

write(*,*) 'n,intj,intj3,intj4,intj5',n,intj,intj3,intj4,intj5 

if((intj .LE. 1) .OR. (intj .GE. n)) flagl=l 
if((intj3 .LE. 1) .OR. (intj3 .GE. n)) flagl=l 
if((intj4 .LE. 1) .OR. (intj4 .GE. n)) flagl=l 
if((intj5 .LE. 1) .OR. (intjS .GE. n)) flagl=l 
if(flagl .EQ. Dthen 

fmult=fmult+1.0 
end if 

write(*,*) 'flagl fmult',flagl,fmult 
write(*,*) 'intj,j3,j4,j5',intj,intj3,intj4,intj5 
write(*,*) 'paused above goto 8' 
if(flagl ,EQ. 1) GOTO 8 

C Calculate the resonance frequency at maximum conductance 

fsl(k)=f + intj*df 
fs3(k)=f3a + intj3*df 
fs4(k)=f4a + intj4*df 
fs5(k)=f5a + intj5*df 
write(*,*) 'df,df 
write(*,*) 'fsl(k)',fsl(k) 
write(* *) •fs3(k)',fs3(k) 



www.manaraa.com

164 

write(*,*) 'fs4(k)',fs4(k) 
write(*,*) 'fs5(lcy.fs5(k) 
write(*,*) 'paused before 12 continue' 

12 continue 

write(*,*) 'n intj intj3 intj4 intj5',n,intj,intj3,intj4,intj5 

Calculate the series resonant frequency, series motional resistance, susceptance offset, 
and cparl 

w 1 =2.0*pi*(f+intj*df) 
CALL CalcAdm(w 1 ,c33s,nu.cL,cLx,pL,pa,h,L,coJco2,i,adm) 

rsl(k) =1.0/(DREAL(adm)) 
boff=DIMAG(adm) 
cparl (k) = boff/(2,0»pi*fsl(k)) 
r3db=rsl(k)*SQRT(2.0) 
fser=fsl(k) 

C 

C Calculate Q2(k),cs2(k) and ls2(k) based on the differential approach 
^ *3fe3(c*3fe3fc3fc3fc:4e:i(c]fe^3|e:4c3fc9|(4c4e4e4c)|c3ic3k3|e4c4E4c3(c4e3|e4c:4c:4c]|c4c3fc3|c3|c3tc:4c4c3|c4:4cak%3|c4c4c9fe4e3fe3|c4c]fc4E3|e3|e%:i(e:|c3|t3fc4c3|c:fc:fe:|c 

do 110j=l,5,l 
f 1 = f + df*(intj)+df*fx*3- df*fx*j 
wl=2.0*pi*fl 
CALL CalcAdm(w 1 ,c33s,nu.cL,cLx,pL,pa,h,L,co4co2,i,adm) 
zserl(j) = 1.0/(adm - i*boff*fl/(f+intj*df)) 

110 continue 

ls2(k)=(DIMAG(zserl(5))-8.0*DIMAG(zserl(4))-DIMAG(zserl 
* (l))+8.0»DIMAG(zserl(2)))/(12.0*df»fx*4.0*pi) 

cs2(k)=1.0/(Is2(k)*(2.0*pi*fsUk))**2) 

Q2(k)=2.0*pi*fsl (k)*ls2(k)/rsl (k) 

C Calculate the 3db bandwidth upper and lower frequencies: whigh and wlow 
C QBW=fs/Q 
^ :|c:4e:fc4c4c3k3k4e4t3|f3|c:(c4c4c:j|c3ic3|c3|c:|e:fc:^4c:4e}fe3k3fc3|c3fe3ii4e4e4E4e4c3f£3k4e4£4e4c4c:|c:|c4c3fe:(c3ie]fc:i|ea|c4ca|e3fc:fc4e4:4e4E:4e3|c3f£4c4c4c%3fe^ 

wlow=0.0 
whigh=1.0 
flow=0.0 
fhigh=1.0 
df2=1.0d-l 
QBW=fsl(k)/Q2(k) 
if((QBW .GT. 300.0).AND.(QBW .LE. 10000.0))then 
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df2=1.0 
end if 
if((QBW .GT. 10000.0).AND.(QBW.LE. 100000.0))then 

df2=10.0d0 
end if 
if((QBW .GT. 100000.0).AND.(QBW .LE. 500000.0))then 

df2=25.0d0 
end if 
if(QBW .GT. 500000.0)GOTO 108 

11 = IDINT(2.2*QBW/df2) 
do 100j=iai.l 

fl=fsl(k) - 1.1*QBW + df2*j 
wl=2.0*pi*fl 
CALL CalcAdni(wI,c33s,nu,cL,cLx,pL,pa,h,L,co,ko2,i,adm) 
zser = 1.0/(adm - i*boff*fl/(f + intj*df)) 
zmag=CDABS(2ser) 

if((wlflag .NE. 1.0).AND,(w2flag .NE. 1.0))then 
if(zmag .LE. r3db)then 

wlflag=1.0 
flow=fl 

end if 
end if 
if((wlflag .EQ. I.O) .AND. (w2flag .NE. 1.0))then 

if(zmag .GE. r3db)then 
w2flag=1.0 
fhigh=fl 

end if 
end if 

continue 

\vrite(*,*) 'Q2(k) and #Q1 initial iterations',Q2(k),Il 

wlflag=10.0 
w2flag=10.0 
dfl=1.0d-2 
11 = IDINT(4.0*df2/dfl) 
do I05j=l,ll.l 

fl=flow-2.0*df2 + dfl*j 
f2=fhigh - 2.0*df2 + dfl*j 
wl=2.0*pi*fl 
w2=2.0*pi*f2 

CALL CalcAdm(wl,c33s,nu,cL,cLx,pL,pa,h,L,co4co2,i,adm) 
zser = 1.0/(adm - i*boff*fl/(f+intj*df)) 
zmag 1 =CD AB S (zser) 

CALL CalcAdm(w2,c33s,nu,cL,cLx,pL,pa,h,L,co,ko2,i,adni) 
zser2 = 1.0/(adm - i*boff*f2/(f + inq"*df)) 
zmag2=CD ABS (zser2) 
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if(j .EQ. l)then 
zbwL = CDABS(zser) 

end if 
if(j .EQ. ll)then 

zbwH = CDABS(zser2) 
end if 

if(wlflag .NE. 1.0)then 
if(zinagl .LE. r3db)then 

wlflag=1.0 
wlow=2.0*pi*fl 

end if 
end if 
if(w2flag .NE. 1.0)then 

if(zmag2 .GE. r3db)then 
w2flag=1.0 
whigh=2.0*pi*f2 

end if 
end if 

105 continue 

if(whigh .EQ. wlow)then 
whigh=2.0*pi 
wlow = 0.0 
setstop=1.0 

end if 

if(w2flag .EQ. 10.0)then 
upfreq=1.0 
if(wlflag .EQ. 10.0)then 

lowfreq=1.0 
end if 
whigh=2.G*pi 
wlow=0.0 
setstop=1.0 

end if 

wbwl = 2.0*pi*(flow - 2.0*df2 + dfl) 
if((wbwl .EQ. wlow) .OR. (zbwL .LT. r3db))then 

lowfreq=1.0 
if(w2flag .EQ. 10.0)then 

upfreq=1.0 
end if 
whigh=2.0*pi 
wlow=0.0 
setstop=1.0 

end if 

if(zbwL .LT. r3db)dien 
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setstop=1.0 
lowfreq=1.0 
wlow=0.0 

end if 
if(2bwH .LT. r3db)then 

setstop=1.0 
upfreq=1.0 
whigh=2.0*pi 

end if 

C Calculate Q, series motional inductance, and series motional capacitance 

Ql(k) = 2.0*pi*(f + intj*df)/(whigh - wlow) 
Isl(k) = rsl(k)/(whigh - wlow) 
csl(k) = 1.0/(lsl(k)*(2.0*pi*fsl(k))**2) 

write(*.*) -k Ql(k) Q2(k)',k.Ql(k).Q2(k) 

if(setstop .EQ. 1.0)then 
Ql(k)=10.0 
lsl{k)=1.0 
csl(k)=1.0 
setstop=10.0 
upfreq=0.0 
lowfreq=0.0 

end if 
108 if(QBW .GT. 500000.0)then 

Ql(k)=10.0 
lsl(k)=I.O 
csl(k)=1.0 

end if 

C Subroutine res_rlc: Calculates the series motional impedance r, 1, and c of 
C the theoretically derived Butterworth Van Dyke model at w = w3 

w3=2.0*pi*fs3(k) 

CALL res_rlc(pi,nu,h,A,e33,ep33,c33s,w3,pa,rs31,cs31,ls31 
* ,ls3al,ls3bl) 

rs3(k)=rs31 
cs3(k)=cs31 
Is3(k)=ls31 

C Call subroutine rljay; calculates the theoretically derived series resistance 
C and series inductance of the viscoelastic overlayer at w = w3 

CALL rl_lay(w3,L.h,cLx,A,e33,vL,nu,c33s,pL,rsll,lsll) 
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fs33(k)=1.0/(2.0*pi*DSQRT((ls31 +lsl l)*cs31)) 
Q3(k)=DSQRT((ls31+lsn)/cs31)/(rs31+rsll) 
rsl(k)=rsll 
lsl(k)=lsll 

intjfl(k)=0.0 
intj3fl(k)=0.0 
intj4fl(k)=0.0 
intj5fl(k)=0.0 
if((intj .EQ. l).OR.(intj .EQ. n))then 

intjfl(k)=1.0 
end if 
if((intj3 .EQ. l).0R.(intj3 .EQ. n))then 

intj3fl(k)=1.0 
end if 
if((intj4 .EQ. l).0R.(intj4 .EQ. n))then 

intj4fl(k)=1.0 
end if 
if((intj5 -EQ. l).0R.(intj5 .EQ. n))then 

intj5fl(k)=1.0 
end if 

write(*,*) 'k,L 1 (k),fs 1 (k)',k,L 1 (k),fs 1 (k) 
write(*,*) '' 
write(*,*) '11 final ,Ql(k) Q2(k)Ml.Ql(k),Q2(k) 
write(*,*) '' 
write(*,*) 'intjfl(k) intj3fl(k)',intjfl(k),intj3fl(k) 
write(*,*)'' 
write(*,*) 'intj4fl(k) intj5fl(k)',intj4fl(k),intj5fl(k) 
write(* *) '' 
nil=k 

C Write to output file "qu_len4.dat" 
********************************************************** 

Open(10,File='qu_len4.dat',Status='OLD') 
write(10,*) 'Viscoelastic Overiayer Thickness Variation' 
write(10,*) 'cL',cL,'cLx',cLx 
write(10,*) 'density'.pL,' velocity',vL 
write(10,*) '' 
write(10,*) 'AT Quartz Resonator' 
writeOO,*) 't',h,' area',A,' viscosity'.nu 
write(10,*) 'c33s',c33s,' K'^2',ko2,' velocity'.va 
write(IO,*) 'intj,intj3,intj4,intj5',intj,intj3,intj4,intj5 
write(10,*) 'setstop,Lowfreq,Upfreq:',setstop,Iovi^req,upfreq 
writedO,*) 'df=',df,' dfl=',dfl 

writedO,*) 'Thickness','.','fsI(MHz)',',','fs3(MHz)' 
do 20kl=l,ml,l 

write( 10,*) LI (kl),',',fsl(kl )* 1 .Od-6,',',fs3(kl)* 1 .Od-6 
20 continue 
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writedO,*) 'fs33(MHz)';,*,'fs4(MHz)*.',','fs5(MHz)* 
do 24 kl=l,ml,l 

write( 10*) fs33(k 1 )* 1.0d-6,','.fs4(k 1 )* 1 .Od-6.'.'. 
* fs5(kl)*1.0d-6 

24 continue 

write( 10,*) 'rs 1 ',',','rs3+rsr,',','cpar 1 (pf)' 
do 28 kl=l.ml,l 

writedO,*) rsl(kl),*/,rs3(kl)+rsl(kl),V,cparl(kl)*1.0dl2 
28 continue 

writedO,*) •Qr.','.'Q2','.'.'Q3' 
do 30kl=l.ml,l 

writed 0,*) Q1 (k 1 ).'.'.Q2(k 1 ).',',Q3(k 1) 
30 continue 

writedO,*) 'lsl(mH)*,','.'ls2(mH)',',','ls3+lsl (mH)* 
do 34kl=l,ml,l 

write( 10,*) Is 1 (kl )* 1.0d3,',',ls2(k 1 )* 1 .Od3,',', 
* as3(kl)+lsl(kl))*1.0d3 

34 continue 

writedO,*) •csl(fF)',',',*cs2(fF)V.Vcs3(fF)' 
do 38 kl=l,ml,l 

write( 10,*) cs 1 (k 1 )* 1 .Od 15,',',cs2(k 1 )* 1 .Od 15,',', 
* cs3(kl)*1.0dl5 

38 continue 

writedO,*) •rs3*,',','rsl',',*.'ls3(mH)' 
do 40 kl=l,ml,l 

write(10,*) rs3(kl),','.rsl(kl),'.Ms3(kl)*1.0d3 
40 continue 

write( 10,*) •lsl(mH)',',','intjfl',',','intj3n' 
do 44 kl=l,ml,l 

write(10,*) lsl(kl)*1.0d3,V,intjfl(kl),V,intj3n(kl) 
44 continue 

write(10,*) •intj4fl',',','intj5fl* 
do 46 kl=l,ml,l 

write(IO,*) intj4fl(kl),V,intj5fl(kl) 
46 continue 

CLOSE (10, STATUS=KEEF) 

5 continue 
end 

C Subroutine CalcAdm: calculates the admittance 
0 
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SUBROUTINE CalcAdm(wl ,c33s,nu,cL.cLx,pL,pa,h,L,co,ko2,i.adm) 

Double Precision wI,x,yo,cL,cLx,pL,L 
REAL c33s,nu,pa,h,co jco2 
COMPLEX i 
Double Complex Lambda,calclam,kL,ka,yl,kl,adm,calcy 

x=wl*nu/c33s 
yo=wl *h*SQRT(pa/c33s) 
yl=yo/CDSQRT(1.0 + i*x) 
kl=CDSQRT(ko2/(1.0 + i*x)) 
ka=wl*CDSQRT(pa/(c33s*(1.0 + i*x))) 
kL=wl *CDSQRT(pL/(cL + i*wl *cLx)) 

Lambda=calclam(kL4ca,cL,cLx,c33s,nu,w 1 ,L,i) 

adm=calcy(w 1 ,i,Lambda,y 1 ,k I ,co) 

C Function calcy: calculates the admittance of the composite resonator 

FUNCTION calcy(wl,i,Lambda,yl4cl,co) 
Double Precision wl 
REAL CO 

COMPLEX i 
Double Complex yljcl,calcy .Lambda 

calcy=i*wl*co*(Lambda*CDCOS(yI)+CDSIN(yI))/((Lambda*CDCOS(yl) 
* +CDSIN(yl))-(kl*kl/yl)*(2.0+Lambda*CDSIN(yl)-2.0*CDCOS(yI))) 

return 

C Function calclam: calculates lambda 

FUNCTION calclam(kLJia,cL,cLx,c33s,nu,w 1 ,L,i) 
Double Precision wl,cL,cLx,L 
REAL c33s,nu 
COMPLEX i 
Double Complex calclamJcLJ^a 

calclam = (kL*(cL + i*wl*cLx)/(ka*(c33s + i*wl*nu)))* 
* CDSIN(kL*L)/CDCOS(kL*L) 

return 
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end 

C Subroudne res_rlc: Calculates the theoretically derived resonator motional impedance 
C parameters: rs3, ls3, and cs3 

SUBROUTINE res_rlc(pi,nu,h,A,e33,ep33,c33s,w 1 ,pa,rs31 ,cs31 ,ls31 
* .Is3al,ls3bl) 

Double Precision wl,ls3al,ls3bl,ls31,cs3I js31 
REAL pi,nu,h,A,e33,ep33,c33s,pa 

rs3I= (pi**2)*nu*h/(8.0*A*e33**2) 
cs31= 8.0*A*(e33**2)/(h*c33s*pi**2) 
ls3al =h/(ep33*A*(wI)**2) 
ls3bl =pa*(h**3)/(8.0*A*e33**2) 
ls3I =ls3al +ls3bl 

end 

Q 3ie4e3(c3|c:fc4e%)fc*%*]|c4ei|c4c*3|cj|c]fc:4c3(e3fc4e4e:4c4cii(i|c3k3ie^4c3k4c4c3fei|c4c]fe]|e]fc%9|e4e3|c4c**)k4c:|c]fc)|c9fe3f£ifcj|c3|c:4e% 
C Subroutine rlJay: Calculates the series resistance and inductance of the 
C viscoelastic overlayer based on the theoretically derived impedance 

SUBROUTINE rl_lay(w 1 ,L,h,cLx,A,e33,vL,nu,c33s,pL,rsl 1 ,lslI) 

Double Precision wI,rsll,lsll,L,cLx,vL,pL 
REAL h,A,e33,nu,c33s 

rsll=(((wl)»*4)*(L**3)*(h**2)*cLx/(12.0*A*(e33**2)* 
* (vL**4)))*(1.0+0.25*(wl*nu/c33s)**2) 

lsll=(pL*L*(h**2)/(4.0*A*(e33**2)))*(1.0+(1.0/3.0)*(wl* 
* L/vL)**2)*(1.0-K).25*(wl*nu/c33s)**2) 

end 

C Subroutine res_x: Calculates the theoretically derived resonator motional impedance 
C parameters: rx(k), lx(k), and cx(k) 

SUBROUTINE res_x(pi,nu,c33s,h,A,e33,pa,rx,cx,Ix) 

Double Precision rx,cx,bc 
REAL pi,nu,h,A,e33,c33s,pa 

rx=2.0*nu*h/(A*e33**2) 
cx= A*(e33**2)/(h*c33s*2.0) 
lx=2.0*pa*(h**3)/(A*(pi**2)*e33**2) 
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end 

C Subroutine rc_m: calculates rm and cm 
f* 9k*3|(4e9fc*3fc3fe4c3|c:4e:fc4c4(4:4t3ic:4e)t(4c:t;4c9|e4e4c4s4c3|(ak:4c 

SUBROUTINE rc_m(wl,L,h,pL,pa,vL,va,ko2,co,cL,cLx,c33s,nu, 
* rm.cm) 

Double Precision wl,delr,deli,rm,cm,L,pL,vL,cL,cLx 
REAL h,pa,va,ko2,co,c33s,nu 

delr=(w I *L*pL/(va*pa))*( 1.0+(((w 1 *L)**2)/(3.0*vL*vL))* 
* (1.0-(nu*cLx*w 1 * w l/{2.0*c33s*cL)))) 

deli=wl*wl*L*pL*nu/(2.0*c33s*pa*va) + (wl*((wl*L)**3)*pL/ 
* (3.0*pa*va*vL*vL))*((cLx/cL)+{nu/(2.0*c33s))) 

nn=(h/(co*ko2*va))*( (wl*L*pL/(pa*va))*{1.0 + (wl*nu/(2.0*c33s 
* ))**2) + (((wl*L)**3)*pL/(3.0*vL*vL*va*pa))*(1.0 + 
* (wl*nu/(2.0»c33s))**2) )/((deli**2)+(delr**2)) 

cm=(co*ko2*va/(w 1 *h))*((deli**2)+(delr**2))/((w 1 *L*pL/(va*pa)) 
* *(1.0-(wl *nu/(2.0*c33s))**2) + (((wl *L)**3)*pL/(3.0*vL*vL* 
* va*pa))*( 1.0-(nu*cLx/(c33s*cL))*(w 1 **2) 
* - (wl*nu/(2.0*c33s))**2)) 

end 

C Subroutine calcmp: calculates the magnitude and phase of impedance 

C SUBROUTINE calcmp(zz,magz,angz) 

C Double Precision magz,angzjez I ,imz 1 
C Double Complex zz 
C rezl=DREAl^z2) 
C imzl=DIMAG(zz) 

C magz=CDABS(zz) 

C if (rezl .EQ. 0.0)then 
C if(imzl .GT.O.O)then 
C angz=90.0 
C else 
C angz=-90.0 
C end if 

dsc 
C angz=(180.0/3.14159265)*DATAN2(DIMAG(zz),DREAL(zz)) 
C end if 
C end 
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